M E M O R A N D U M

MWH

2353 130th Avenue N.E., Suite 200 Bellevue, Washington 98005 Phone: (425) 602-4000

Fax: (425) 602-4020

To: Mark Ader, USEPA-10

Doug Tanner, IDEQ Clyde Cody, IDEQ **Date:** July 3, 2008

Lenna Cope, ENE

From: Bill Wright and Colin Duffy, MWH Reference

Reference: P4 Production, Monsanto Elemental

Phosphorus Plant

Subject: Transmittal of Second CERCLA Five-Year Review Sediment Report – Final – Rev. 0

Dear Mark, Doug, Clyde, and Lenna,

Please find enclosed the *Second CERCLA Five-Year Review Sediment Report – Final - Rev. 0*. As no comments were provided for the draft version of this document submitted on May 15, 2008, we have revised the title and consider this a final draft. This document will be transmitted electronically via our FTP site as well as in hard copy accompanied by CD. This sediment report is submitted as one of two reports that MWH plan to submit. A technical soil report is to accompany and will be submitted at the same time.

Sincerely,

Bill Wright

Project Manager

P4 PRODUCTION MONSANTO ELEMENTAL PHOSPHORUS PLANT

Second CERCLA Five-Year Review Soil Report - Rev. 1 - Final

Prepared by

2353 130th Avenue N.E., Suite 200 Bellevue, Washington 98005

TABLE OF CONTENTS

1.0		ODUCTION	
2.0		IODOLOGY	
3.0		ISTICAL RESULTS	
3.		ment ResultsAlexander Reservoir Sediments	
	3.1.1		
	3.1.1.1		
	3.1.1.2		
	3.1.1.3	11	
	3.1.1.5		
	3.1.1.6		
	3.1.1.7		
	3.1.1.8		
	3.1.2	Soda Creek Sediments	
	3.1.2.1	Arsenic	3-11
	3.1.2.2	Cadmium	3-12
	3.1.2.3	Copper	3-13
	3.1.2.4	Nickel	3-14
	3.1.2.5	Selenium	3-15
	3.1.2.6	Silver	3-16
	3.1.2.7	Vanadium	3-17
	3.1.2.8	Polonium-210	3-18
	3.1.3	Alexander Reservoir Sediment Summary	
	3.1.4	Soda Creek Sediment Summary	
4.0		ISTICAL CALCULATIONS	
5.0			
6.0	REFE	RENCES	6-1
TAl	BLES		
,	Table 3.1.	Alexander Reservoir Arsenic Comparisons	
,	Table 3.2.	Alexander Reservoir Cadmium Comparisons	
,	Table 3.3.	Alexander Reservoir Copper Comparisons	
	Table 3.4.	Alexander Reservoir Nickel Comparisons	
	Table 3.5.	Alexander Reservoir Selenium Comparisons	
	Table 3.6.	Alexander Reservoir Silver Comparisons	
	Table 3.7.	Alexander Reservoir Vanadium Comparisons	
	Table 3.8.	Alexander Reservoir Polonium-210 Comparisons	
	Table 3.9.	Soda Creek Arsenic Comparisons	
	Table 3.10	1	
,	Table 3.11	. Soda Creek Copper Comparisons	

i

Table 3.12.	Soda Creek Nickel Comparisons
Table 3.13.	Soda Creek Selenium Comparisons
Table 3.14.	Soda Creek Silver Comparisons
Table 3.15.	Soda Creek Vanadium Comparisons
Table 3.16.	Soda Creek Polonium-210 Comparisons
Table 3.17.	Sediment Quality Summary in Alexander Reservoir
Table 3.18.	Sediment Quality Summary in Alexander Reservoir
FIGURES	
Figure 3.1.	Alexander Reservoir Sediment Quality-Arsenic
Figure 3.1.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Arsenic
Figure 3.2.	Alexander Reservoir Sediment Quality-Cadmium
Figure 3.2.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Cadmium
Figure 3.3.	Alexander Reservoir Sediment Quality-Copper
Figure 3.3.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Copper
Figure 3.4.	Alexander Reservoir Sediment Quality-Nickel
Figure 3.4.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Nickel
Figure 3.5.	Alexander Reservoir Sediment Quality-Selenium
Figure 3.5.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Selenium
Figure 3.6.	Alexander Reservoir Sediment Quality-Silver
Figure 3.6.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Silver
Figure 3.7.	Alexander Reservoir Sediment Quality-Vanadium
Figure 3.7.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Vanadium
Figure 3.8.	Alexander Reservoir Sediment Quality-Polonium-210
Figure 3.8.1.	Kolmogorov-Smirnov Test for M10 Alexander Reservoir Sediment-Polonium-210
Figure 3.9.	Soda Creek Sediment Quality-Arsenic
Figure 3.9.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment-Arsenic
Figure 3.10.	Soda Creek Sediment Quality-Cadmium
Figure 3.10.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment- Cadmium
Figure 3.11.	Soda Creek Sediment Quality-Copper
Figure 3.11.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment-Copper
Figure 3.12.	Soda Creek Sediment Quality-Nickel
Figure 3.12.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment-Nickel
Figure 3.13.	Soda Creek Sediment Quality-Selenium

Figure 3.13.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment- Selenium
Figure 3.14.	Soda Creek Sediment Quality-Silver
Figure 3.14.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment-Silver
Figure 3.15.	Soda Creek Sediment Quality-Vanadium
Figure 3.15.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment-
	Vanadium
Figure 3.16.	Soda Creek Sediment Quality-Polonium-210
Figure 3.16.1.	Kolmogorov-Smirnov Test for M10 Soda Creek Sediment-
	Polonium-210
Figure 3.17.	Alexander Reservoir Sample Locations
Figure 3.18.	Five-Year Review Sediment Sampling Locations: Middle and
	Upper Soda Creek Control Areas
Figure 3.19.	Five-Year Review Sediment Sampling Locations: Lower Soda
	Creek Control and Downstream Areas
Figure 3.25.	Alexander Reservoir Sampling Locations
Figure 3.26.	Middle and Upper Soda Creek Control Areas
Figure 3.27.	Lower Soda Creek Control and Downstream Areas

APPENDICES

Appendix A Sediment Data Evaluation and Quality Control Summary

LIST OF ACRONYMS

ARARs	applicable or relevant or appropriate requirements
COC	contaminant of concern
COPC	constituent of potential concern
DW	dry weight
USEPA-10	US Environmental Protection Agency Region 10
FS	feasibility study
IDEQ	Idaho Department of Environmental Quality
K-S	Kolmogorov-Smirnov
K-W	Kruskal-Wallis
LSD	Fisher's least significant difference
NPDES	National Pollutant Discharge Elimination System
RI/FS	remedial investigation/feasibility study
RI	remedial investigation
ROD	record of decision

1.0 INTRODUCTION

Sediment samples were collected as part of the phase II (1992-1995) remedial investigation (RI), and five and ten-year monitoring program (in 2002 and 2007) in the Alexander Reservoir at the inlets of Soda Creek and Bear River using a mini-ponar dredge at nine locations in each inlet. Samples were also collected along the upstream and downstream reaches of Soda Creek during phases I (1991-1992) & II remedial investigations and as part of the five-year monitoring program. These samples were collected in an effort to determine what, if any, impacts the Monsanto elemental phosphorus plant has on Soda Creek and Alexander Reservoir.

Soda Creek is over six miles in length, flows along the western side of the plant in a general north-to-south direction, and discharges into the Alexander Reservoir. Monsanto utilizes an NPDES-permitted outfall for cooling water that discharges into Soda Creek.

Samples collected during the five and ten-year monitoring programs were subject to analysis with a reduced analyte list that included arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), selenium (Se), silver (Ag), vanadium (V), and polonium-210 (²¹⁰Po). The reduction in analytes from the phase I & II investigations was approved by the USEPA-10 and is found in the record of decision (ROD; USEPA, 1997). These eight analytes remain because they were the only contaminants that remained at elevated concentrations in the reservoir or the creek after the RI.

Data collected from the RI and five and ten-year monitoring program events were grouped into control and affected categories for evaluation. Data collected in Alexander Reservoir during the RI spatially matched the monitoring data collected by MWH in 2002 and 2007. The analyte lists were also equivalent, save for ²¹⁰Po, which was not analyzed during the RI, but was analyzed during five-year review monitoring in the reservoir. The same stations were sampled during the monitoring as during the RI.

In Soda Creek, data were not collected in the exact same locations from the RI as during the monitoring. However, samples were collected at locations sufficiently close so as to provide a reliable comparison. Similarly, the analyte lists were comparable between the RI and the 2002 and 2007 monitoring. Soda Creek samples were classified as control (upstream) or affected (downstream) depending on their location in relation to the Monsanto plant outfall.

Supplemental Phase II RI data collected for Soda Creek from the time Alexander Reservoir was sampled (in 1994) are ignored here. The supplemental sediment quality data for the creek are reported as mg/kg clay in Golder Associates, 1997, and are thus not comparable to previously collected data or to those collected during the 2002 and 2007 samplings, which are reported as mg/kg dw fines (where fines are less than 2 mm in effective diameter i.e., fine sands, silts, and clays).

Sediment collection in the reservoir and the creek followed the appropriate field sampling plan (MWH, 2002).

For the first five-year review, statistical analysis was conducted nonparametrically with a Kruskal-Wallis (K-W) analysis of variance (ANOVA). When the K-W test was statistically significant, a Fisher's least significant difference (LSD) test was used to determine specific differences between sampling areas (control vs. affected) and times (RI and monitoring).. These tests were performed in Excel using formulae provided in Georgia Institute of Technology (2003). Each K-W test and any subsequent Fisher's LSD tests were performed at a Type I error rate (i.e., false alarm rate) of 0.05.

The Type I error rate, α , for the Fisher's LSD tests is controlled on a per-comparison basis and is accurate only when there are exactly three groups being compared. The LSD test is a refined form of multiple t tests. For multiple t tests there is a multiple comparison problem where the experiment-wise Type I error rate, α_e , (the overall error rate applied once all comparisons have been completed) inflates as the number of comparisons, denoted by r, increases as follows:

$$\alpha_e = 1 - (1 - \alpha)^r.$$

(http://www.psych.utoronto.ca/courses/c1/chap12/chap12.html). Thus, when r > 1, $\alpha_e > \alpha$. For example, when $\alpha = 0.050$ and r = 3, $\alpha_e \approx 0.143$; when $\alpha = 0.050$ and r = 30, $\alpha_e \approx 0.785$. The relevance is that a large number of multiple comparisons can end up

showing significant differences, even when no such differences exist. Given that the LSD is not performed unless the K-W test is significant, the LSD test is regarded as protected LSD. However, with more than three groups to compare, the LSD results, even though protected by the K-W test, are going to be more liberal than the specified α (i.e., $\alpha_e > \alpha$).

During the five-year review there were four groups: (1) RI control, (2) RI affected, (3) monitoring year 5 control, and (4) monitoring year 5 affected. Thus, use of the LSD to identify which groups differ should not be excessively liberal. However, the 10-year review now has six groups: the previously identified four plus (5) monitoring year 10 control, and (6) monitoring year 10 affected. We have opted to continue to use the K-W and LSD for the ten-year review, but we call out the multiple comparison problem and add an additional test to nonparametrically test the 10-year monitoring affected areas to their respective controls without any multiple comparisons the Kolmogorov-Smirnov two distribution (K-S) test.

We recommend using the K-S test to evaluate the results of future monitoring. Unlike the K-W test, it does not merely test the difference between medians of distributions, it tests the difference between entire distributions. Because control data and affected data are available for each setting, there are no multiple comparisons with the K-S test it will merely test whether the affected distribution is higher than the corresponding control distribution for a given year. It also has the advantage of generating an easily understood graph for each test. The test statistic for the K-S test is D, the maximum vertical distance between the two empirical cumulative distribution functions.

In the future there will undoubtedly be a desire to compare results from control data and affected data for all sampling events to determine whether significant change is occurring over time. Rather than using the protected Fisher's LSD, we recommend adopting an alternative method of multiple comparison; for example, Tukey's Honestly Signficant Difference (HSD), in which Type I error is controlled on an experiment-wise basis (http://www.psych.utoronto.ca/courses/c1/chap12/chap12.html).

For the 10-year monitoring the K-W and K-S tests were performed with XLStat, statistics software that is added on to Excel. Unfortunately, XLStat does not handle multiple comparisons other than if there are multiple comparisons to a single control, which does not fit our needs. Thus, the LSDs following a significant K-W test are calculated based on the results of a nonparametric ANOVA performed with Excel on the ranked concentrations for a given analyte in a given setting Soda Creek or Alexander Reservoir. Excel worksheets with such calculations and XLStat outputs are appended. Results from the data interpretation are presented in the sections that follow. Nonparametric methods are used because of heterogeneity of variance between control and affected areas that is not eliminated with a simple transformation. A detailed discussion of the K-W test is provided in the 5-year review report because all calculations were conducted in Excel worksheets. A description of the LSD procedure is outlined here because these calculations are conducted in the appended Excel worksheets.

Nonparametric Protected Fisher s LSD Procedure

- K-W test is performed on data using XLStat.
- If the K-W test is significant, rank all concentrations for a given analyte in a given setting.
- Use Excel s single factor ANOVA function to conduct an analysis of variance on the ranked data; ignore the p value, because the K-W test has already informed us that at least one significant difference between groups exists; the Excel ANOVA output organizes the results to make the LSD calculations more convenient.
- Calculate the critical LSD value for the difference in mean rank between any two groups, i and j, as follows:

$$LSD = t_{\alpha/2,\nu} \sqrt{MS_{w} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)},$$

where: $t_{\alpha/2,\nu}$ is the two-sided Student s t value for a given Type I error rate and ν degrees of freedom, which are the degrees of freedom associated with the within mean square error of the ANOVA on the ranks, MS_w ; and n_i and n_j are the number of samples in each of the two groups being evaluated. When:

$$\left| \overline{y}_i - \overline{y}_j \right| > LSD$$

then the difference in the mean ranks of the two groups, \bar{y}_i and \bar{y}_j , is regarded as statistically significant.

Results from the data interpretation are presented in the following sections.

3.1 SEDIMENT RESULTS

Sediment analytical results from the K-W and K-S tests for Alexander Reservoir and Soda Creek are presented below.

3.1.1 Alexander Reservoir Sediments

Sediment sample medians collected in Alexander Reservoir are presented below. The data presented are from the RI conducted by Golder Associates, and the five and ten-year monitoring efforts conducted by MWH. In the tables below, sample median concentrations that are indistinguishable from one another are shown with their medians highlighted on the same row. Any differences are denoted by displaying medians on different rows. RI results are from remedial investigation sampling events, and M05 and M10 results are data collected during the five and ten-year monitoring programs, respectively.

For each analyte a graphical display of the data plotted against distance from the mouth of the Bear River (for control data) or the mouth of Soda Creek (for affected data) is presented. These plots are provided for visual interpretation to see changes over space and time. The graphical results from the K-S tests are also presented for each analyte. For each control/affected pair the empirical cumulative distribution functions are plotted along with the p value derived from the K-S test.

3.1.1.1 Arsenic

The medians of the arsenic data are presented in Table 3.1, *Alexander Reservoir Arsenic Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that contamination is present, but conditions have been at steady state with some variance since the RI. The graphical plot in Figure 3.1 confirms the statistical analysis, whereas Figure 3.1.1 confirms that M10 control and affected concentrations are statistically different.

	Table 3.1: Alexander Reservoir Arsenic Comparisons												
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected							
[As] _{sed}		5.9				9.6							
mg/kg dw				3.6			Affected area elevated, but does not appear to be						
	2.4				2.9		increasing						
	2.4		1.9										

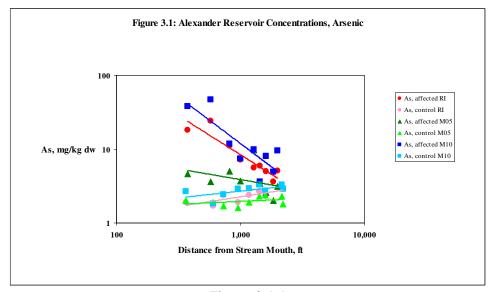
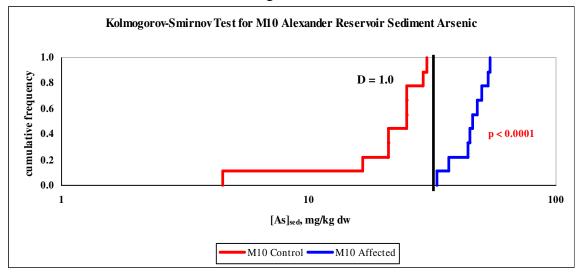



Figure 3.1.1

3.1.1.2 Cadmium

The medians of the cadmium data are presented in Table 3.2, *Alexander Reservoir Cadmium Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that contamination is present, but conditions have been at steady state with some variance since the RI. The graphical plot in Figure 3.2 confirms the statistical analysis, whereas Figure 3.2.1 confirms that M10 control and affected concentrations are statistically different.

	Table 3.2: Alexander Reservoir Cadmium Comparisons												
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected							
[Cd] _{sed}		8.9				4.8							
mg/kg dw				2.8			Affected area elevated, but does not appear to be						
					0.60		increasing						
	0.30		0.46										

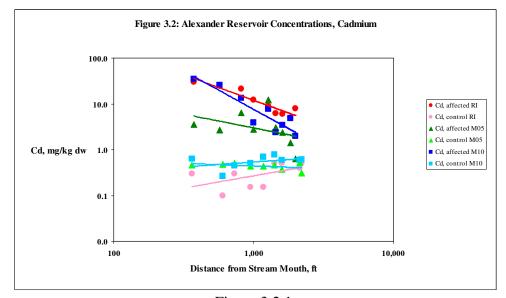
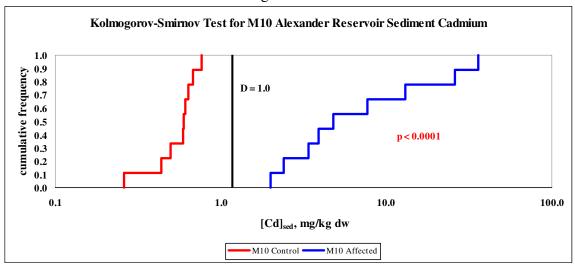



Figure 3.2.1:

3.1.1.3 Copper

The medians of the copper data are presented in Table 3.3, *Alexander Reservoir Copper Comparisons*. The results of the Kruskal-Wallis test and Fisher s LSD show that copper concentrations are not, and never have been, elevated. The graphical plot in Figure 3.3 confirms the statistical analysis but suggests that there may be an upstream source of copper, whereas Figure 3.3.1 confirms that confirms that M10 control and affected concentrations are not statistically different.

	Table 3.3: Alexander Reservoir Copper Comparisons											
	RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected											
[Cu] _{sed} mg/kg dw	6.7	6.4	5.1	5.9	7.3	7.5	Affected area not elevated					

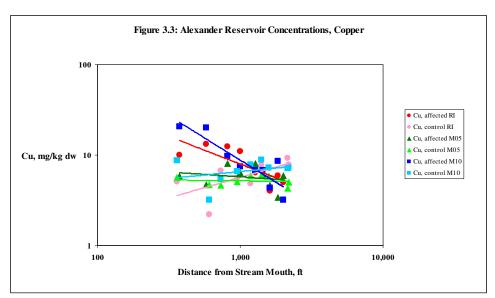
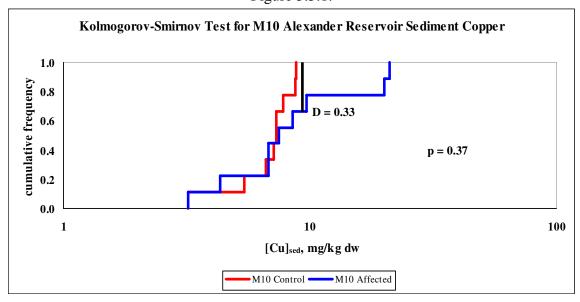



Figure 3.3.1:

3.1.1.4 Nickel

The medians of the nickel data are presented in Table 3.4, *Alexander Reservoir Nickel Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that concentrations are elevated, but conditions have been at steady state with some variance since the RI. The graphical plot in Figure 3.4 confirms the statistical analysis but suggests that there may be a natural source of nickel upstream, whereas Figure 3.4.1 confirms that M10 control and affected concentrations are statistically different.

	Table 3.4: Alexander Reservoir Nickel Comparisons												
	RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected												
[Ni] _{sed}		20				17	Affected area elevated, but does not appear to be						
mg/kg dw				11			increasing						
	8.0		7.2		9.0		increasing						

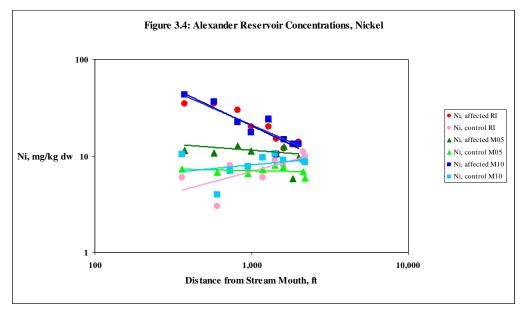
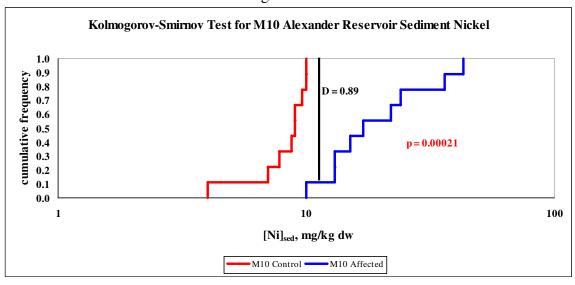



Figure 3.4.1:

3.1.1.5 Selenium

The medians of the selenium data are presented in Table 3.5, *Alexander Reservoir Selenium Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that concentrations are elevated, but have been at steady state with some variance since the RI. The graphical plot in Figure 3.5 confirms the statistical analysis, whereas Figure 3.5.1 confirms that M10 control and affected concentrations are statistically different.

	Table 3.5: Alexander Reservoir Selenium Comparisons												
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected							
[Se] _{sed} mg/kg dw		2.3											
mg/kg dw	0.70					1.1	Affected area elevated, but does not appear to be						
	0.70			0.66			increasing						
					0.42		increasing						
			0.29										

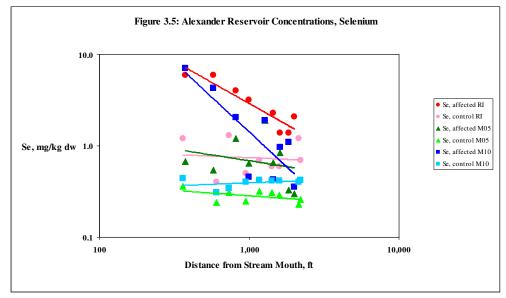
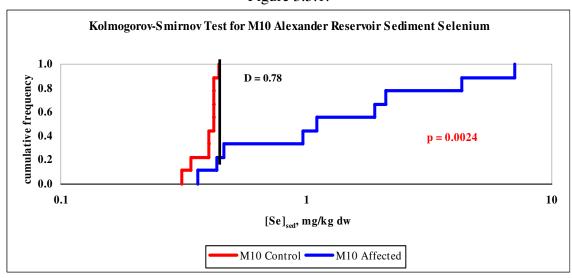



Figure 3.5.1:

3.1.1.6 Silver

The medians of the silver data are presented in Table 3.6, *Alexander Reservoir Silver Comparisons*. The results of the Kruskal-Wallis test and Fisher s LSD show that concentrations were elevated during the RI, but have since dropped to background levels and have reached steady state. The graphical plot in Figure 3.6 confirms the statistical analysis but suggests that there may be inputs arriving from Soda Creek, whereas Figure 3.6.1 confirms that M10 control and affected concentrations are not statistically different.

	Table 3.6: Alexander Reservoir Silver Comparisons												
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected							
[Ag] _{sed}		0.10	0.077	0.087	0.090	0.10	Affected area may have been elevated in the past,						
mg/kg dw	0.040						but does not appear elevated now						

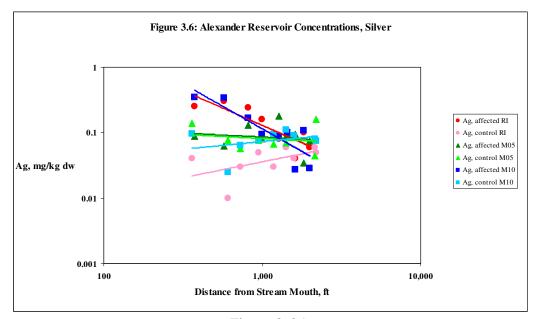
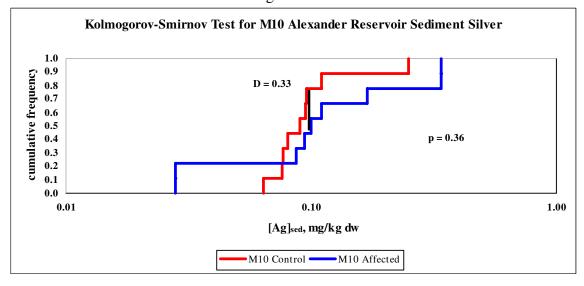



Figure 3.6.1:

3.1.1.7 Vanadium

The medians of the vanadium data are presented in Table 3.7, *Alexander Reservoir Vanadium Comparisons*. The results of the Kruskal-Wallis test and Fisher s LSD show that concentrations have been elevated in the past, but no longer appear to be significant because as shown below, in section 3.1.2.7, Soda Creek does not show vanadium contamination. Figure 3.7 suggests that there may be natural vanadium inputs upstream in Soda Creek, whereas Figure 3.6.1 confirms that M10 control and affected concentrations are statistically different.

	Table 3.7: Alexander Reservoir Vanadium Comparisons											
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected						
$[V]_{sed}$		25				21						
mg/kg dw	18						Affected area elevated, but does not appear to be					
				11	15		increasing					
			7.8									

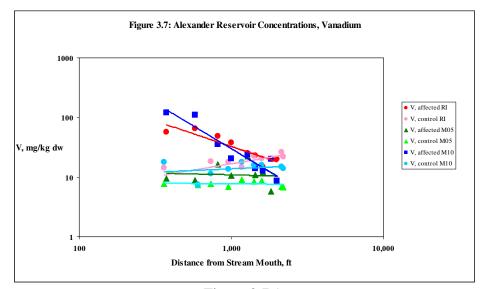
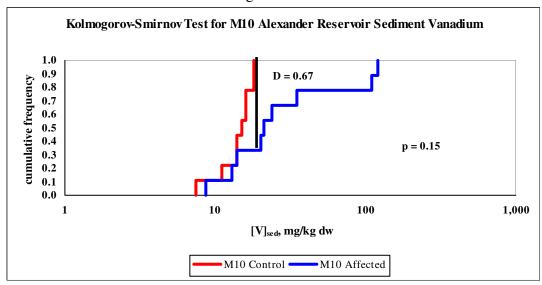



Figure 3.7.1:

3.1.1.8 Polonium-210

The medians of the polonium-210 data are presented in Table 3.8, *Alexander Reservoir Polonium-210 Comparisons*. The results of the Kruskal-Wallis test and Fisher s LSD show concentrations are not, and never have been, elevated. The graphical plot in Figure 3.8 confirms the statistical analysis, whereas Figure 3.8.1 that M10 control and affected concentrations are not statistically different.

	Table 3.8: Alexander Reservoir Polonium-210 Comparisons											
	RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected											
[²¹⁰ Po] _{sed} pCi/g dw	Not Sampled	Not Sampled	1.1	1.2	0.93	1.2	Affected area not elevated					

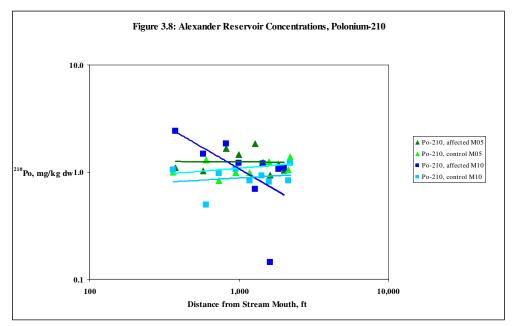
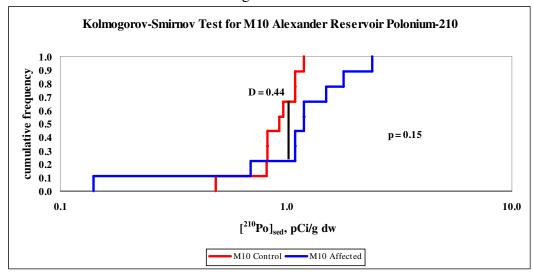



Figure 3.8.1:

3.1.2 Soda Creek Sediments

Sediment sample medians collected in Soda Creek are presented below. The data presented are from the RI conducted by Golder Associates, and the five and ten-year monitoring conducted by MWH. In the tables below, median concentrations that are indistinguishable from one another are shown with their medians highlighted on the same row. Any differences are denoted by displaying medians on different rows. RI results are from remedial investigation sampling events, and M05 and M10 results are data collected during the five and ten-year monitoring programs, respectively.

For each analyte a graphical display is presented of the data plotted against distance from the Monsanto outfall; upstream (for control data) or downstream (for affected data). These plots are provided for visual interpretation. There is only a single control sample from the RI. The results from the K-S test are also presented for each analyte.

3.1.2.1 Arsenic

The medians of the arsenic data are presented in Table 3.9, *Soda Creek Arsenic Comparisons*. The results of the Kruskal-Wallis test and Fisher s LSD show that concentrations are not, and have never been, elevated. The graphical plot in Figure 3.9 confirms the statistical analysis, whereas Figure 3.9.1 confirms that M10 control and affected concentrations are not statistically different.

			Table	e 3.9: Soda Cre	ek Arsenic Com	parisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
[As] _{sed} mg/kg dw	6.2	33	24	9.2	12	62	Affected area not elevated

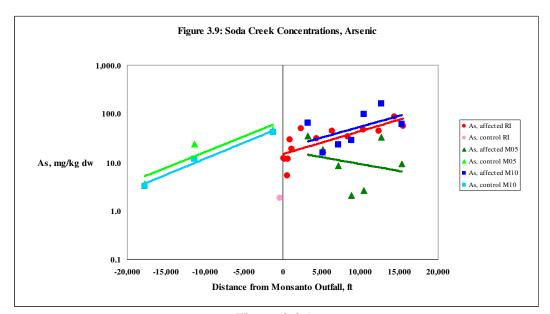
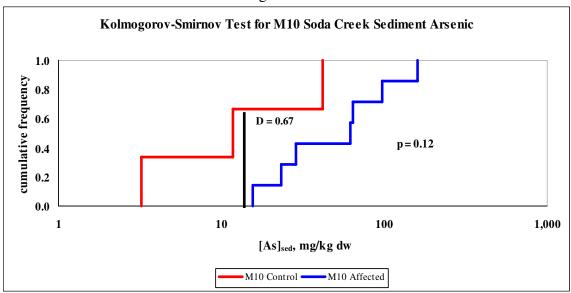



Figure 3.9.1:

3.1.2.2 Cadmium

The medians of the cadmium data are presented in Table 3.10, *Soda Creek Cadmium Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that concentrations are currently elevated and appear to be at steady state. The graphical plot in Figure 3.10 confirms the statistical analysis, whereas Figure 3.10.1 confirms that M10 control and affected concentrations are statistically different.

			Table	3.10: Soda Cree	ek Cadmium Co	mparisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
[Cd] _{sed}		22				15	
[Cd] _{sed} mg/kg dw	11	22		10		13	Affected area elevated, but does not appear
				10	0.65		to be increasing
			0.38		0.03		

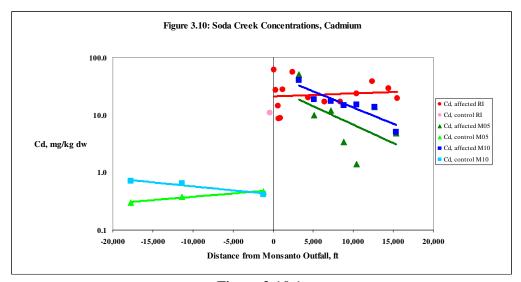
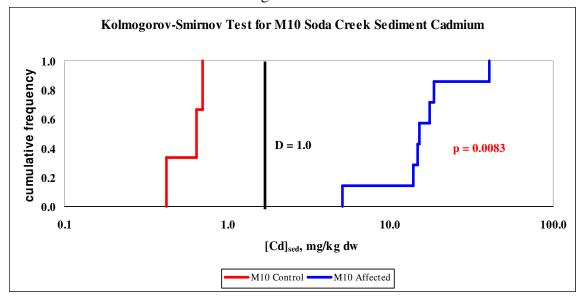



Figure 3.10.1:

3.1.2.3 Copper

The medians of the copper data are presented in Table 3.11, *Soda Creek Copper Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that concentrations are currently elevated but have varied historically. The graphical plot in Figure 3.11 confirms the statistical analysis, whereas Figure 3.11.1 confirms that M10 control and affected concentrations are statistically different.

			Table	e 3.11: Soda Cre	eek Copper Con	nparisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
[Cu] _{sed}		17				9.1	Affected area elevated, but does not appear
mg/kg dw			6.4				to be increasing
	2.7		0.4	5.1	4.5		to be increasing

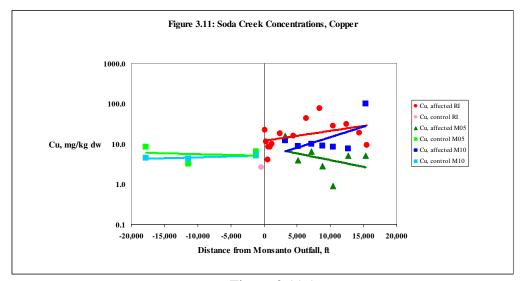
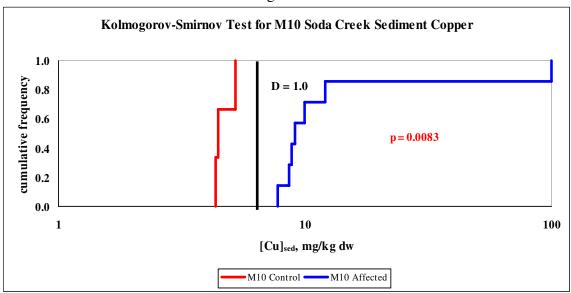



Figure 3.11.1:

3.1.2.4 Nickel

The medians of the nickel data are presented in Table 3.12, *Soda Creek Nickel Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that nickel concentrations have never been elevated. The graphical plot in Figure 3.12 confirms the statistical analysis, whereas Figure 3.12.1 confirms that M10 control and affected concentrations are not statistically different.

			Tabl	e 3.12: Soda Cr	eek Nickel Com	parisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
[Ni] _{sed} mg/kg dw	55	35	30	12	22	30	Affected area not elevated

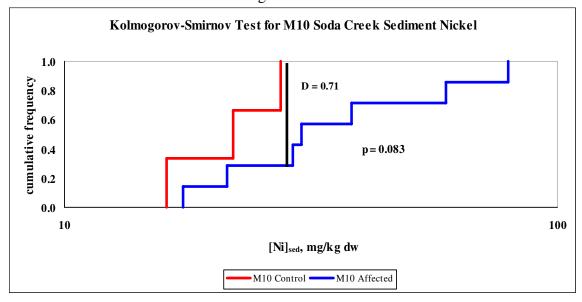



Figure 3.12.1:

3.1.2.5 Selenium

The medians of the selenium data are presented in Table 3.13, *Soda Creek Selenium Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that concentrations have always been elevated, but appear to be at steady state. The graphical plot in Figure 3.13 confirms the statistical analysis, whereas Figure 3.13.1 confirms that M10 control and affected concentrations are statistically different.

			Table	3.13: Soda Cre	ek Selenium Co	mparisons .	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	MIO Affected	
[Se] _{sed}		3.5		33		4.0	Affected area elevated, but does not appear
mg/kgdw			0.79	3.3			to be increasing
	0.60		0.79		0.60		to te indeesing

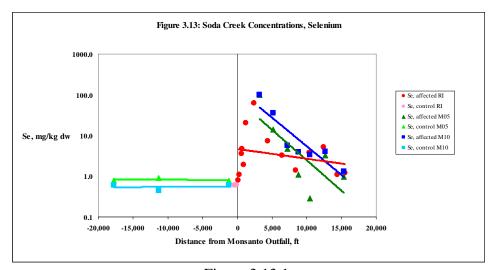
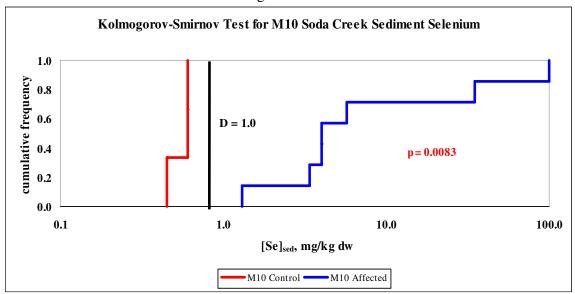



Figure 3.13.1:

3.1.2.6 Silver

The medians of the silver data are presented in Table 3.14, *Soda Creek Silver Comparisons*. The results of the Kruskal-Wallis test and Fisher's LSD show that contamination is currently present, and concentrations have varied historically since the RI. The graphical plot in Figure 3.14 confirms the statistical analysis, whereas Figure 3.14.1 confirms that M10 control and affected concentrations are statistically different.

			Tab	le 3.14: Soda G	reek Silver Con	parisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	MIO Affected	
[Ag] _{sed}		1.6				0.22	Affected area elevated, but it may be
mg/kg dw	0.10						decreasing
	uio		0.14	0.11	0.049		account

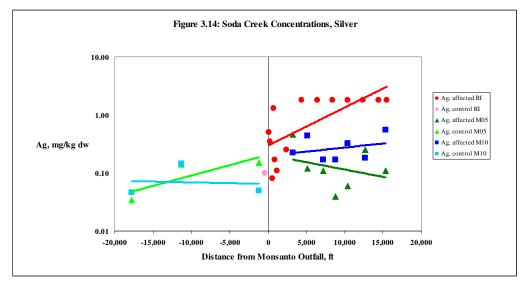
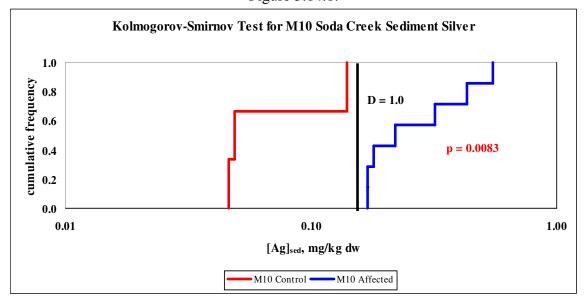



Figure 3.14.1:

3.1.2.7 Vanadium

The medians of the vanadium data are presented in Table 3.15, *Soda Creek Vanadium Comparisons*. Although the results of the Kruskal-Wallis test and Fisher s LSD show that concentrations were historically, and are currently, elevated, figure 3.15.1 suggests that there is currently no difference between the control and affected sites. Thus suggesting that Soda Creek vanadium concentrations at affected sites, are at control concentrations.

			Table 3	3.15: Soda Cree	k Vanadium Co	omparisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
$[V]_{sed}$		100				87	Affected area has been elevated at times,
mg/kg dw	23		50	41	41		but does not appear to be increasing

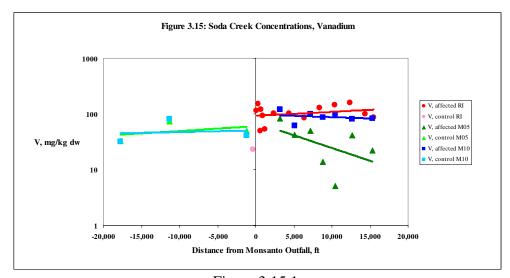
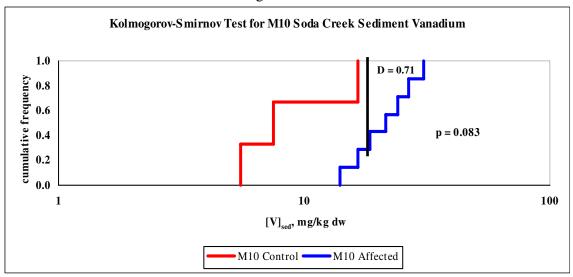



Figure 3.15.1:

3.1.2.8 Polonium-210

The medians of the ²¹⁰Po data are presented in Table 3.16, *Soda Creek Polonium-210 Comparisons*. The results of the Kruskal-Wallis test and Fisher s LSD show that concentrations have never been elevated. The graphical plot in Figure 3.16 confirms the statistical analysis, whereas Figure 3.16.1 confirms that M10 control and affected concentrations are not statistically different.

			Table 3.1	16: Soda Creek	Polonium-210 (Comparisons	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	MIO Affected	
[²¹⁰ Po] _{sed} pG/g dw	0.67	1.2	0.96	2.0	0.92	1.2	Affected area not elevated

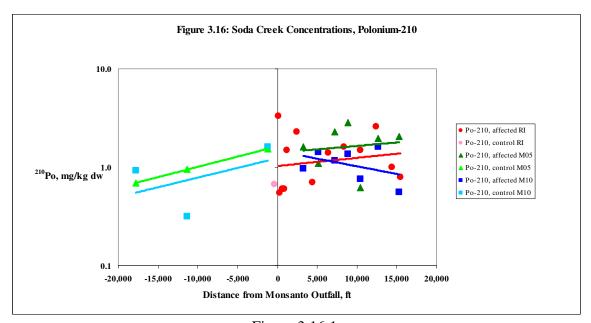
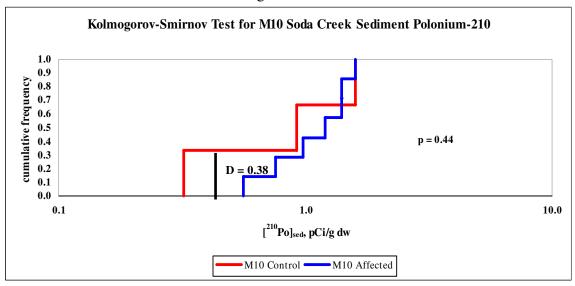



Figure 3.16.1:

3.1.3 Alexander Reservoir Sediment Summary

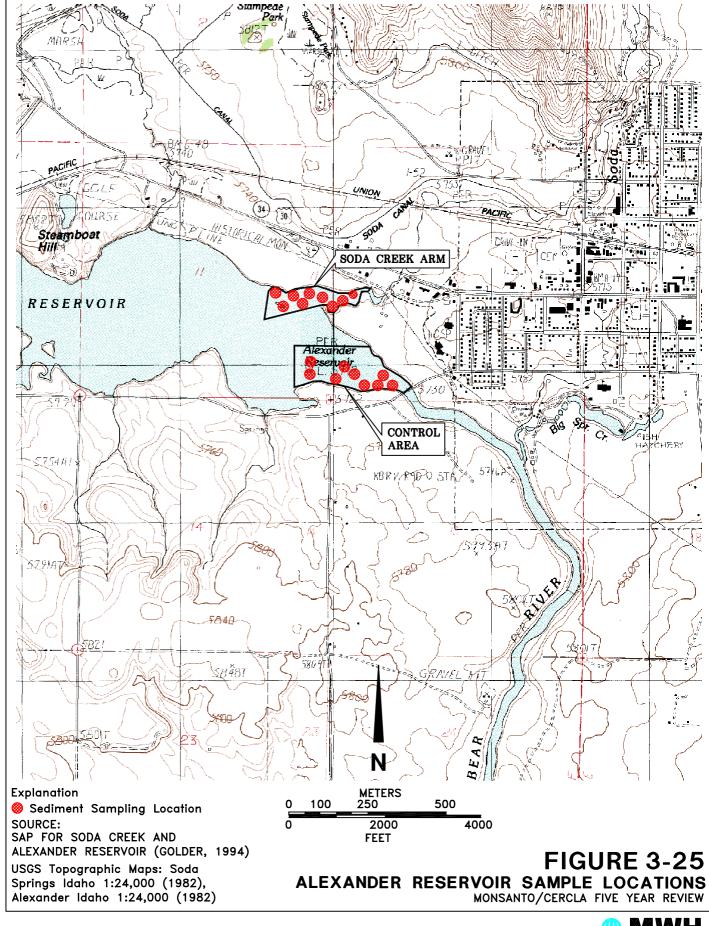
Table 3.17, *Sediment Quality Summary in Alexander Reservoir* presents a summary of the Kruskal-Wallis and Fisher's LSD test. The right side column presents the interpretation of these data.

		Ta	able 3.17: Sed	iment Quality S	Summary in A	lexander Reser	voir
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
[As] _{sed}		5.9				9.6	
mg/kg dw				3.6			Affected area elevated, but does not appear
	2.4				2.9		to be increasing
			1.9				
[Cd] _{sed}		8.9				4.8	
mg/kg dw		0.9		2.8		4.0	Affected area elevated, but does not appear
nig/kg uw				2.0	0.60		to be increasing
	0.30		0.46		0.00		1
[Cu] _{sed} mg/kg dw	6.7	6.4	5.1	5.9	7.3	7.5	Affected area not elevated
	1			1			Г
[Ni] _{sed}		20		- 11		17	Affected area elevated, but does not appear
mg/kg dw	0.0		7.0	11	0.0		to be increasing
	8.0		7.2		9.0		
[Se] _{sed}		2.3					
mg/kg dw	0.70					1.1	Affected area elevated, but does not appear
	0.70			0.66			to be increasing
					0.42		to be increasing
			0.29				
[Ag] _{sed}		0.10	0.077	0.087	0.090	0.10	Affected area may have been elevated in
mg/kg dw	0.040	0110	0.077	0.007	0.030	0110	the past, but does not appear elevated now
					•		1 / 11
$[V]_{sed}$		25				21	
mg/kg dw	18						Affected area elevated, but does not appear
				11	15		to be increasing
			7.8				
[²¹⁰ Po] _{sed}							
pCi/g dw	NS	NS	1.1	1.2	0.93	1.2	Affected area not elevated

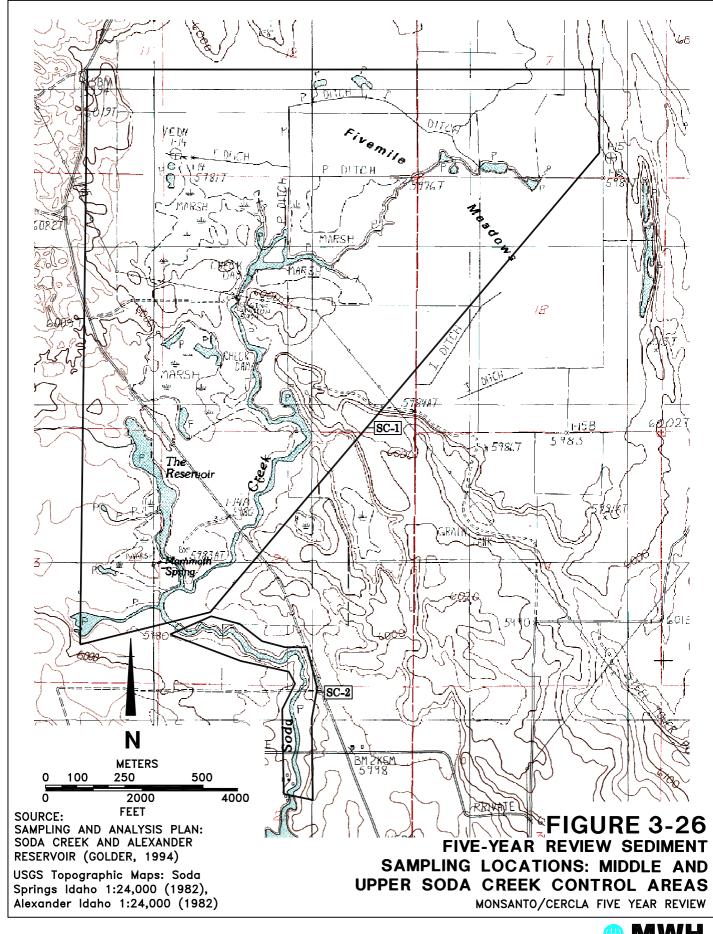
3.1.4 Soda Creek Sediment Summary

Table 3.18, *Sediment Quality Summary in Soda Creek* presents a summary of the Kruskal-Wallis and Fisher s LSD test. The right side column presents the interpretation of these data.

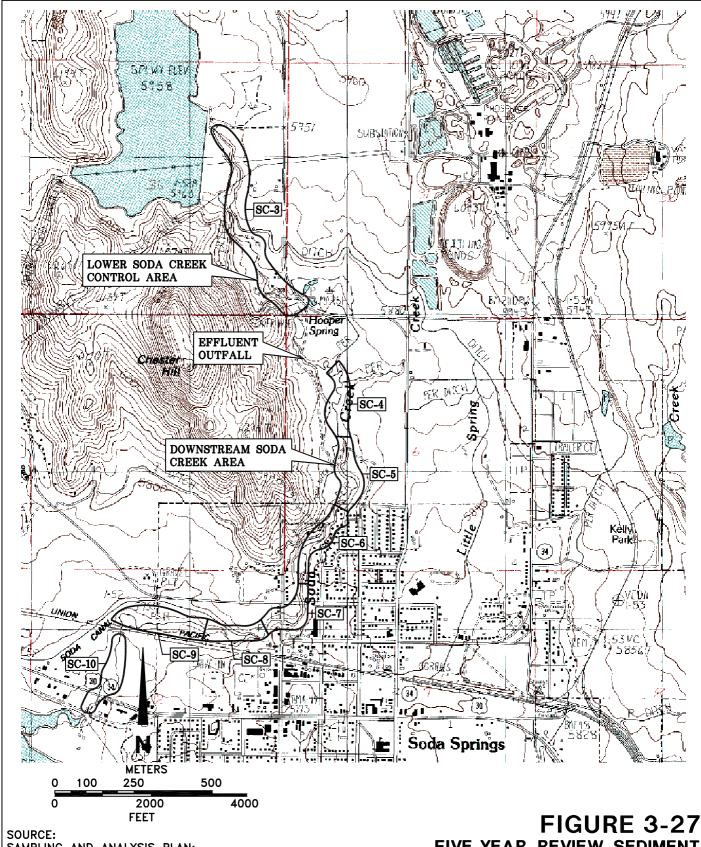
			Table 3.	18: Sediment Qual	ity Summary in So	da Creek	
	RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
[As] _{sed} mg/kg dw	6.2	33	24	9.2	12	62	Affected area not elevated
FG 11							
[Cd] _{sed} mg/kg dw		22				15	Affected area elevated, but does not appear to
mg/kg uw	11			10			be increasing
			0.38		0.65		ا
[Cu] _{sed}		17				9.1	Affected area elevated, but does not appear to
mg/kg dw			6.4			7.12	be increasing
	2.7			5.1	4.5		
[Ni] _{sed}							
mg/kg dw	55	35	30	12	22	30	Affected area not elevated
	•	•	•			•	
[Se] _{sed}		3.5		3.3		4.0	Affected area elevated, but does not appear to
mg/kg dw	0.60		0.79		0.60		be increasing
	0.60				0.60		_
[Ag] _{sed}		1.6					
mg/kg dw		1.0				0.22	Affected area elevated, but it may be
mg/ng u	0.10		0.14	0.11	0.049		decreasing
$[V]_{sed}$		100				87	Affected area has been elevated at times, but
mg/kg dw	23		50	41	41		does not appear to be increasing
210							
[²¹⁰ Po] _{sed}	0.67	1.2	0.96	2.0	0.92	1.2	Affected area not elevated
pCi/g dw							


Figure 3-25, Alexander Reservoir Sample Locations presents the locations of the sediment samples collected in the Soda Creek and control arms of the reservoir. Figure 3-26, Five-Year Review Sediment Sampling Locations: Middle and Upper Soda Creek Control Areas and Figure 3-27, Five-Year Review Sediment Sampling Locations: Lower Soda Creek Control and Downstream Areas present the locations for the control and downstream sediment sampling locations.

3.1.5 Overall Summary


When looking at the reservoir and creek sediments as a whole, it appears a case could be made for deleting As, Cu, Ni, Ag, V, and ²¹⁰Po from the monitoring analyte list for this medium. As we stated in the 5-year monitoring review, none of these analytes is known to be a contaminant in either the groundwater underneath or NPDES discharge from the Monsanto plant. Furthermore, ²¹⁰Po is a concern from a stack emissions perspective and is regulated by the USEPA under the Clean Air Act s program called the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Polonium, a volatile metal similar to lead, is driven off in the heat of the rotary kiln and monitored at the stacks; it is not a concern in water, and thus is not of concern in sediment.

The eight sediment monitoring analytes the six listed above plus Cd and Se were identified by USEPA-10 in the ROD as being elevated in either the reservoir or the creek. While we have not formally compared reservoir and creek samples, a review of Tables 3-17 and 3-18 shows, according to the 10-year review K-W test and subsequent LSD tests, that ²¹⁰Po was not elevated in the creek during the RI (it was not tested in the reservoir then). And, median concentrations in the Soda Creek arm of Alexander Reservoir (the affected portion of the reservoir) are comparable to control concentrations in the creek for As, Cd, Ni, Ag, and V.


We have avoided performing additional formal statistical comparisons at this time as this would only aggravate the multiple comparison problem. And we don't recommend deleting any analytes from the sediment monitoring list at this time. We do, however, recommend that the idea of deleting As, Cu, Ni, Ag, V, and ²¹⁰Po be accepted as an alternative hypothesis to be tested during the 15-year review. To do this effectively means redesigning the statistical analyses e.g., finding a more reliable way of dealing with multiple comparisons, comparing reservoir results to creek result, and factoring in spatial considerations, and doing so in consultation with an experienced statistician.

SOURCE: SAMPLING AND ANALYSIS PLAN: SODA CREEK AND ALEXANDER RESERVOIR (GOLDER, 1994) USGS Topographic Maps: Soda Springs Idaho 1:24,000 (1982) FIGURE 3-27
FIVE-YEAR REVIEW SEDIMENT
SAMPLING LOCATIONS: LOWER SODA
CREEK CONTROL AND DOWNSTREAM AREAS
MONSANTO/CERCLA FIVE YEAR REVIEW

4.0 STATISTICAL CALCULATIONS

The statistical calculations for the above analyses are presented on the following pages. The calculations were completed using the XLSTAT add-on application in Microsoft Excel.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman,) - on 3/24/2008 at 5:14:05 PM Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = As! / Range = 'As! '§A\$3:\$F\$12 / 9 rows and 6 columns	Hypothesized difference (D): 0	Significance level (%): 5			Kruskal-Wallis test:		K (Observed value) 41.496	K (Critical value) 11.070	DF 5	p-value (Two-tailed) < 0.0001
) Affected	3.6	4.9	7.4	8.1	9.6	6.6	12	38	47
	Control M1	6.1	2.4	2.7	2.7	2.9	2.9	2.9	3.3	3.3
	Affected M1	2.0	2.6	3.1	3.4	3.6	3.7	4.6	5.0	9.7
nt Quality	Control M05	1.6	1.7	1.8	1.9	1.9	2.0	2.3	2.3	2.4
lexander Reservoir Sediment Quality rsenic, mg/kg dw	Il Control RI Affected M05 Control M05 Affected M10 Control M10 Affected	3.6	5.0	5.1	5.6	5.9	7.2	=	18	24
Alexander Reservo Arsenic, mg/kg dw	RI Control RI	1.7	1.9	1.9	2.3	2.4	2.4	2.7	2.9	2.9

< 0.0001 K (Observed value) K (Critical value) p-value (Two-tailed)

Test interpretation: H_o: The samples are not significantly different.

 $\ensuremath{\text{H}_{\text{a}}}\xspace$ The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis Ho, and accept the alternative hypothesis Ha. The risk to reject the null hypothesis $\,H_0$ while it is true is lower than 0.01%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

Arsenic, rank RI Control RI Affected 2.5 33 7.5 38.5	ted M05 Control 33 1 88.5 2.5	I M05 Control M05 Affected M1 1 10.5 2.5 19	M10 Control 4.5 16.5	M10 Affect	Anova: S SUMMAR GA
	40 4.5	28			RI Contr
	42 7.5	333	25	. 4 . 48 . 48	M05 Affe
	49 13	36			M10 Cor
	51 13	38.5			M10 Affe
	52 16.5	47			

		59.20	48	2.841.50	Vithin Groups
0.000000000.0	34.62	2,049.60	2	10,248.00	etween Groups
ď	F	MS	df	SS	Source of Variation
					NOVA
	48.3	45.6	410.0	6	110 Affected
	59.8	21.9	197.0	6	110 Control
	116.3	30.9	278.0	6	105 Affected
	27.3	8.4	76.0	6	105 Control
	39.3	43.3	389.5	6	II Affected
	64.2	14.9	134.5	6	I Control

					significance															
	0.0000000000000000000000000000000000000				LSD _{0,050} s	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
ı	34.62				∇	28.3	6.5	15.9	6.9	30.6	34.8	12.4	21.4	2.3	22.4	13.4	37.1	0.6	14.7	23.7
9	MS 2.049.60	59.20																		
3	at 5	48	53	æ		RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	M05 Affected	M10 Control	M10 Affected	M10 Control	M10 Affected	M10 Affected
9	10.248.00	2,841.50	13,089.50	ant Differenc	Comparison	_		_	_	_	_	_	_	_	_		_	_	_	_
ANOVA	Source of Variation Between Groups	Within Groups	Total	Fisher's Least Significant Difference	Comp	RI Control v.	RI Control v	RI Control v	RI Control v	RI Control v	RI Affected v	RI Affected v	RI Affected v	RI Affected v	M05 Control v	M05 Control v	M05 Control v	M05 Affected v	M05 Affected v	M10 Control v

2.4

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected 2.9

5.9

Currently: As contamination present. Historically: As contamination has been present in the past, but does not appear to be increasing.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 3:31:49 PM

Sample 1: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = As! / Range = 'As!'!\$E\$25:\$E\$34 / 9 rows and 1 column

Sample 2: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = As! / Range = 'As!'!\$F\$25:\$F\$34 / 9 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	4.500	30.000	21.889	7.733
M10 Affected	9	0	9	33.000	54.000	45.556	6.948

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	1.000
p-value	< 0.0001
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H₂.

The risk to reject the null hypothesis H_0 while it is true is lower than 0.01%.

Ties have been detected in the data and the appropriate corrections have been applied.

Cadmium, mg/kg dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
0.10	5.0	0.31	0.62	0.26	2.0
0.15	6.0	0.37	1.4	0.44	2.4
0.15	6.2	0.44	2.4	0.50	3.4
0.30	8.0	0.44	2.7	0.59	3.9
0.30	8.9	0.46	2.8	0.60	4.8
0.40	12	0.46	3.0	0.61	7.7
0.50	21	0.48	3.5	0.64	13
0.50	25	0.50	6.3	0.68	26
0.50	30	0.52	12	0.77	36

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 5:40:20 PM

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Cd! / Range = 'Cd!'\\$A\\$3:\\$F\\$12 / 9 rows and 6 columns Hypothesized difference (D): 0 Significance level (%): 5

Kruskal-Wallis test:

(Observed value)	43.884
(Critical value)	11.070
F	5
o-value (Two-tailed)	< 0.0001
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a. The risk to reject the null hypothesis H₀ while it is true is lower than 0.01%.

Ties have been detected in the data and the appropriate corrections have been applied.

Cadmium, rank

M10 Affected	M10 Control	M05 Affected	M05 Control	RI Affected	I Control
30	4	25	7	40	1
31.5	11	29	8	41	2.5
36	18	31.5	11	42	2.5
38	22	33	11	45	5.5
39	23	34	13.5	46	5.5
44	24	35	13.5	47.5	9
49	26	37	15	50	18
52	27	43	18	51	18
54	28	47.5	21	53	18

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	9	80.0	8.9	52.0
RI Affected	9	415.5	46.2	21.3
M05 Control	9	118.0	13.1	20.3
M05 Affected	9	315.0	35.0	47.2
M10 Control	9	183.0	20.3	64.8
M10 Affected	9	373.5	41.5	76.3

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	10,849.22	5	2,169.84	46.21	0.000000000000000033
Within Groups	2,253.78	48	46.95		
Total	13,103.00	53			

Fisher's Least Significant Difference

	Comparison			LSD _{0.050}	si	gnificance
RI Control	V.	RI Affected	37.3		6.5	!
RI Control	٧.	M05 Control	4.2		6.5	
RI Control	٧.	M05 Affected	26.1		6.5	!
RI Control	V.	M10 Control	11.4		6.5	!
RI Control	V.	M10 Affected	32.6		6.5	!
RI Affected	٧.	M05 Control	33.1		6.5	!
RI Affected	V.	M05 Affected	11.2		6.5	!
RI Affected	V.	M10 Control	25.8		6.5	!
RI Affected	٧.	M10 Affected	4.7		6.5	
M05 Control	٧.	M05 Affected	21.9		6.5	!
M05 Control	V.	M10 Control	7.2		6.5	!
M05 Control	V.	M10 Affected	28.4		6.5	!
M05 Affected	٧.	M10 Control	14.7		6.5	!
M05 Affected	٧.	M10 Affected	6.5		6.5	!
M10 Control	٧.	M10 Affected	21.2		6.5	!

0.30 0.46
RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

8.9

Currently: Cd contamination present.
Historically: Cd contamination has been present in the past, but does not appear to have increased.

4.8

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 3:40:51 PM

Sample 1: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Cd! / Range = 'Cd!'!\$E\$3:\$E\$12 / 9 rows and 1 column

Sample 2: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Cd! / Range = 'Cd!'!\$F\$3:\$F\$12 / 9 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	0.260	0.770	0.566	0.149
M10 Affected	9	0	9	2.000	36.000	11.022	12.075

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	1.000
p-value	< 0.0001
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a . The risk to reject the null hypothesis H_0 while it is true is lower than 0.01%.

Copper, mg/kg dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
2.2	4.0	4.3	3.4	3.2	3.2
4.8	5.0	4.6	4.6	5.4	4.3
5.1	5.9	4.7	4.7	6.6	6.8
5.6	6.3	5.0	5.8	7.1	6.8
6.7	6.4	5.1	5.9	7.3	7.5
7.1	10	5.6	6.1	7.3	8.5
7.7	11	5.8	6.4	7.8	9.7
7.8	12	5.9	8.0	8.7	20
9.3	13	6.0	8.1	8.8	21

6.7	6.4	5.1	5.9	7.3	7.5

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: No evidence of Cu contamination. Historically: No evidence of Cu contamination.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 7:27:24 PM

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Cu / Range = Cul\$A\$3:\$F\$12 / 9 rows and 6 columns Hypothesized difference (D): 0

Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	9.612
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.087
alpha	0.050

Test interpretation:

- Ho: The samples are not significantly different.
- H_a: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H₀ while it is true is 8.70%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 3:47:33 PM

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	3.200	8.800	6.911	1.734
M10 Affected	9	0	9	3.200	21.000	9.756	6.406

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.333
p-value	0.366
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

- H₀: The samples are not significantly different.
- H_a: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H_{0} while it is true is 36.57%.

Nickel, mg/kg dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
3.0	12	5.9	5.8	4.0	10
6.0	13	6.6	9.6	7.0	13
6.0	14	6.8	11	7.8	13
7.0	15	6.9	11	8.7	15
8.0	20	7.2	11	9.0	17
8.0	20	7.2	11	9.0	22
9.0	30	7.3	12	10	24
10	35	7.6	13	10	36
11	35	8.0	24	10	43

Nickel, rank

Control	RI Affected	M05 Control	MU5 Affected	M10 Control	M10 Affected
1	35.5	4	3	2	27.5
5.5	38.5	7	24.5	10.5	38.5
5.5	41	8	32	16	38.5
10.5	42.5	9	32	20	42.5
18	45.5	12.5	32	22	44
18	45.5	12.5	32	22	47
22	50	14	35.5	24.5	48.5
27.5	51.5	15	38.5	27.5	53
32	51.5	18	48.5	27.5	54

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 10:07:11 PM Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (version 1).xls / Sheet = Ni! / Range = 'Ni!'!\$A\$3:\$F\$12 / 9 rows and 6

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (version 1).xls / Sheet = Ni! / Hange = 'Ni!',\$A\$3:\$F\$12 / 9 rows and 6 columns

Hypothesized difference (D): 0

Kruskal-Wallis test:

Significance level (%): 5

K (Observed value)	38.231
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	< 0.0001
alpha	0.05

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a. The risk to reject the null hypothesis H₀ while it is true is lower than 0.01%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	9	140.0	15.6	113.3
RI Affected	9	401.5	44.6	32.9
M05 Control	9	100.0	11.1	19.5
M05 Affected	9	278.0	30.9	151.6
M10 Control	9	172.0	19.1	70.5
M10 Affected	9	393.5	43.7	68.1

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	9,441.67	5	1,888.33	24.85	0.00000000000029
Within Groups	3,647.33	48	75.99		
Total	13,089.00	53			

Fisher's Least Significant Difference

Olgrinicant Di	ilciciloc			
Comparison	1	1.1	LSD _{0.050}	significance
v.	RI Affected	29.1	8.3	!
v.	M05 Control	4.4	8.3	
٧.	M05 Affected	15.3	8.3	!
٧.	M10 Control	3.6	8.3	
٧.	M10 Affected	28.2	8.3	!
٧.	M05 Control	33.5	8.3	!
٧.	M05 Affected	13.7	8.3	!
٧.	M10 Control	25.5	8.3	!
٧.	M10 Affected	0.9	8.3	
٧.	M05 Affected	19.8	8.3	!
٧.	M10 Control	8.0	8.3	
٧.	M10 Affected	32.6	8.3	!
٧.	M10 Control	11.8	8.3	!
٧.	M10 Affected	12.8	8.3	!
٧.	M10 Affected	24.6	8.3	!
	Comparisor v. v. v. v. v. v. v. v. v. v	v. M05 Control v. M05 Affected v. M10 Control v. M10 Affected v. M05 Control v. M05 Affected v. M05 Control v. M10 Control v. M10 Affected	Comparison I V. RI Affected 29.1 V. M05 Control 4,4 V. M05 Affected 15.3 V. M10 Control 3.6 V. M10 Affected 28.2 V. M05 Control 33.5 V. M05 Affected 13.7 V. M10 Control 25.5 V. M10 Affected 0.9 V. M10 Affected 19.8 V. M10 Control 8.0 V. M10 Affected 32.6 V. M10 Control 11.8 V. M10 Affected 12.8	Comparison I LSD _{0.050} V. RI Affected 29.1 8.3 V. M05 Control 4.4 8.3 V. M05 Affected 15.3 8.3 V. M10 Control 3.6 8.3 V. M05 Control 33.5 8.3 V. M05 Control 33.5 8.3 V. M05 Affected 13.7 8.3 V. M10 Control 25.5 8.3 V. M10 Affected 0.9 8.3 V. M10 Affected 19.8 8.3 V. M10 Control 8.0 8.3 V. M10 Control 11.8 8.3 V. M10 Affected 12.8 8.3

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: Ni contamination present.

20

Historically: Ni contamination has been present in the past, but does not appear to be increasing.

17

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 3:54:04 PM

 $Sample 1: Workbook = Alexander \ Reservoir \ Sediment \ Quality \ Statistics \ 2007 \ (03-28-08).xls \ / \ Sheet = Ni! \ / \ Range = 'Ni!'! \ F$3: \ F$12 \ / \ 9 \ rows \ and \ 1 \ column \ Sample 2: Workbook = Alexander \ Reservoir \ Sediment \ Quality \ Statistics \ 2007 \ (03-28-08).xls \ / \ Sheet = Ni! \ / \ Range = 'Ni!'! \ F$3: \ F$12 \ / \ 9 \ rows \ and \ 1 \ column \ Alexander \ Reservoir \ Sediment \ Quality \ Statistics \ P$12 \ / \ 9 \ rows \ Alexander \ P$12 \ / \ 9 \ rows \ P$12 \ / \ 9$

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	4.000	10.000	8.344	1.905
M10 Affected	9	0	9	10.000	43.000	21.444	11.282

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.889
p-value	0.00021
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a . The risk to reject the null hypothesis H_0 while it is true is lower than 0.02%.

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
0.40	1.4	0.23	0.30	0.31	0.36
0.50	1.4	0.24	0.33	0.34	0.43
0.60	1.9	0.25	0.54	0.40	0.46
0.60	2.1	0.26	0.64	0.40	0.97
0.70	2.3	0.29	0.66	0.42	1.1
0.70	3.2	0.31	0.68	0.42	1.9
1.2	4.0	0.31	0.84	0.42	2.1
1.2	6.0	0.32	1.2	0.42	4.3
1.3	6.0	0.36	1.9	0.44	7.1

Kruskal-Wallis test:

K (Observed value)	38.160
(Critical value)	11.070
OF .	5
p-value (Two-tailed)	< 0.0001
alpha	0.050

Hypothesized difference (D): 0 Significance level (%): 5

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a.

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Se! / Range = 'Se!'!\$A\$3:\$F\$12 / 9 rows and 6 columns

The risk to reject the null hypothesis H₀ while it is true is lower than 0.01%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 10:40:43 PM

Selenium, mg/kg dw

M10 Affected	M10 Control	M05 Affected	M05 Control	RI Affected	RI Control
13.5	8	6	1	41.5	16
22	12	11	2	41.5	25
24	16	26	3	44	27.5
35	16	29	4	46.5	27.5
36	19.5	30	5	48	32.5
44	19.5	31	8	49	32.5
46.5	19.5	34	8	50	38
51	19.5	38	10	52.5	38
54	23	44	13.5	52.5	40

Anova: Single Factor

SUMMARY				
Groups	Count	Sum	Average	Variance
RI Control	9	277.0	30.8	58.6
RI Affected	9	425.5	47.3	17.9
M05 Control	9	54.5	6.1	16.9
M05 Affected	9	249.0	27.7	147.8
M10 Control	9	153.0	17.0	21.1
M10 Affected	9	326.0	36.2	196.3

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	9,433.11	5	1,886.62	24.69	0.0000000000032
Within Groups	3,668.39	48	76.42		
Total	13,101.50	53			

Fisher's Least Significant Difference

			1.1		
	Comparison			LSD _{0.050}	significance
RI Control	٧.	RI Affected	16.5	8.3	!
RI Control	V.	M05 Control	24.7	8.3	!
RI Control	٧.	M05 Affected	3.1	8.3	
RI Control	V.	M10 Control	13.8	8.3	!
RI Control	٧.	M10 Affected	5.4	8.3	
RI Affected	٧.	M05 Control	41.2	8.3	!
RI Affected	٧.	M05 Affected	19.6	8.3	!
RI Affected	٧.	M10 Control	30.3	8.3	!
RI Affected	٧.	M10 Affected	11.1	8.3	!
M05 Control	٧.	M05 Affected	21.6	8.3	!
M05 Control	V.	M10 Control	10.9	8.3	!
M05 Control	٧.	M10 Affected	30.2	8.3	!
M05 Affected	v.	M10 Control	10.7	8.3	!
M05 Affected	v.	M10 Affected	8.6	8.3	!
M10 Control	V.	M10 Affected	19.2	8.3	!

Currently: Se contamination present.

Historically: Se contamination has been present in the past, but appears to not have increased.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 4:19:00 PM

Sample 1: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = Se! / Range = 'Se!'!\$E\$3:\$E\$12 / 9 rows and 1 column Sample 2: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = Se! / Range = 'Se!'!\$F\$3:\$F\$12 / 9 rows and 1 column Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	0.310	0.440	0.397	0.043
M10 Affected	9	0	9	0.360	7.100	2.080	2.254

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.778
p-value	0.0024
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a. The risk to reject the null hypothesis H₀ while it is true is lower than 0.24%.

Silver, mg/kg dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
0.010	0.040	0.044	0.034	0.064	0.028
0.030	0.060	0.057	0.062	0.076	0.028
0.030	0.080	0.066	0.075	0.077	0.087
0.040	0.090	0.070	0.081	0.080	0.094
0.040	0.10	0.077	0.087	0.090	0.10
0.050	0.16	0.077	0.093	0.095	0.11
0.050	0.24	0.092	0.095	0.096	0.17
0.060	0.25	0.14	0.13	0.11	0.34
0.060	0.30	0.16	0.18	0.25	0.34

Silver, rank					
RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
1	8	10	6	18	2.5
4.5	15	13	17	22	2.5
4.5	26.5	19	21	24	29.5
8	31.5	20	28	26.5	35
8	39.5	24	29.5	31.5	39.5
11.5	45.5	24	34	36.5	41.5
11.5	49	33	36.5	38	47
15	50.5	44	43	41.5	53.5
15	52	45.5	48	50.5	53.5

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 11:10:46 PM

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Ag! / Range = 'Ag!'!\$A\$3:\$F\$12 / 9 rows and 6 columns

Hypothesized difference (D): 0 Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	17.384
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.004
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis Ha.

The risk to reject the null hypothesis H_0 while it is true is lower than 0.38%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	9	79.0	8.8	23.8
RI Affected	9	317.5	35.3	258.6
M05 Control	9	232.5	25.8	158.9
M05 Affected	9	263.0	29.2	172.0
M10 Control	9	288.5	32.1	109.9
M10 Affected	9	304.5	33.8	377.7

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	4,298.61	5	859.72	4.69	0.0015
Within Groups	8,806.89	48	183.48		
Total	13,105.50	53			

Fisher's Least Significant Difference

i isilei s Lea	st olgillilcant biller	CIICC			
	Comparison			LSD _{0.050}	significance
RI Control	٧.	RI Affected	26.5	12.8	!
RI Control	٧.	M05 Control	17.1	12.8	!
RI Control	٧.	M05 Affected	20.4	12.8	!
RI Control	٧.	M10 Control	23.3	12.8	!
RI Control	٧.	M10 Affected	25.1	12.8	!
RI Affected	V.	M05 Control	9.4	12.8	
RI Affected	V.	M05 Affected	6.1	12.8	
RI Affected	٧.	M10 Control	3.2	12.8	
RI Affected	٧.	M10 Affected	1.4	12.8	
M05 Control	v.	M05 Affected	3.4	12.8	
M05 Control	٧.	M10 Control	6.2	12.8	
M05 Control	v.	M10 Affected	8.0	12.8	
M05 Affected	d v.	M10 Control	2.8	12.8	
M05 Affected	d v.	M10 Affected	4.6	12.8	
M10 Control	٧.	M10 Affected	1.8	12.8	

0.087 0.090 0.10 0.040 RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: No evidence of Ag contamination.

Historically: Ag contamination may have been present in the past, but does not appear to exist now.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 4:28:48 PM

 $Sample \ 1: Workbook = Alexander \ Reservoir \ Sediment \ Quality \ Statistics \ 2007 \ (03-28-08). \\ xls \ / \ Sheet = Ag! \ / \ Range = \ 'Ag!'! E3: E12 \ / \ 9 \ rows \ and \ 1 \ column \ Agther \ Agth$

Sample 2: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = Ag! / Range = 'Ag!'!\$F\$3:\$F\$12 / 9 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	0.064	0.250	0.104	0.056
M10 Affected	9	0	9	0.028	0.340	0.144	0.119

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.333
p-value	0.36
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H₀.

The risk to reject the null hypothesis H₀ while it is true is 36.35%.

17 11		
Vanadium,	ma/ka	aw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
7.5	15	6.8	5.8	7.4	8.7
14	20	6.9	8.5	11	13
15	20	6.9	8.9	14	14
18	23	7.4	9.4	14	20
18	25	7.8	11	15	21
20	38	7.8	11	16	24
22	49	8.5	12	16	35
23	57	8.6	16	18	110
26	66	9.1	22	18	120

p-value (Two-tailed) Test interpretation:

alpha

K (Critical value)

Kruskal-Wallis test: K (Observed value)

Hypothesized difference (D): 0 Significance level (%): 5

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

31.343

11.070

0.050

< 0.0001

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = V / Range = V!\$A\$3:\$F\$12 / 9 rows and 6 columns

The risk to reject the null hypothesis H₀ while it is true is lower than 0.01%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 11:51:10 PM

Vanadium, rank

M10 Affected	M10 Control	M05 Affected	M05 Control	RI Affected	I Control
13	5.5	1	2	27	7
21	18	10.5	3.5	37.5	23.5
23.5	23.5	14	3.5	37.5	27
37.5	23.5	16	5.5	43.5	33.5
40	27	18	8.5	46	33.5
45	30	18	8.5	49	37.5
48	30	20	10.5	50	41.5
53	33.5	30	12	51	43.5
54	33.5	41.5	15	52	47

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	9	294.0	32.7	150.1
RI Affected	9	393.5	43.7	68.9
M05 Control	9	69.0	7.7	19.2
M05 Affected	9	169.0	18.8	132.5
M10 Control	9	224.5	24.9	79.0
M10 Affected	9	335.0	37.2	219.1

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	7,743.11	5	1,548.62	13.89	0.000000021
Within Groups	5,350.39	48	111.47		
Total	13,093.50	53			

Fisher's Least Significant Difference

	Comparison		11	LSD _{0.050}	significance
RI Control	V.	RI Affected	11.1	10.0	!
RI Control	v.	M05 Control	25.0	10.0	!
RI Control	V.	M05 Affected	13.9	10.0	!
RI Control	V.	M10 Control	7.7	10.0	
RI Control	v.	M10 Affected	4.6	10.0	
RI Affected	V.	M05 Control	36.1	10.0	!
RI Affected	V.	M05 Affected	24.9	10.0	!
RI Affected	V.	M10 Control	18.8	10.0	!
RI Affected	V.	M10 Affected	6.5	10.0	
M05 Control	V.	M05 Affected	11.1	10.0	!
M05 Control	V.	M10 Control	17.3	10.0	!
M05 Control	V.	M10 Affected	29.6	10.0	!
M05 Affected	٧.	M10 Control	6.2	10.0	
M05 Affected	V.	M10 Affected	18.4	10.0	!
M10 Control	V.	M10 Affected	12.3	10.0	!

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: V contamination present.

Historically: V contamination has been present in the past, but appears to not have increased.

21

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 4:41:45 PM

Sample 1: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = V! / Range = 'V!'!\$E\$3:\$E\$12 / 9 rows and 1 column Sample 2: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = V! / Range = 'V!'!\$F\$3:\$F\$12 / 9 rows and 1 column Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	7.400	18.000	14.378	3.396
M10 Affected	9	0	9	8.700	120.000	40.633	42.900

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.667
p-value	0.015
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a . The risk to reject the null hypothesis H_0 while it is true is lower than 1.45%.

Polonium-210, pCi/g dw

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected 0.84 0.94 0.49 0.99 0.82 1.0 0.70 0.99 1.0 0.83 1.1 1.0 1.1 0.83 1.1 1.1 1.2 0.93 1.2 1.2 1.2 1.0 1.2 1.2 1.5 1.5 1.1 1.3 1.7 1.1 1.8 2.4

1.1	1.2	0.93	1.2

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: No evidence of Po-210 contamination. Historically: No evidence of Po-210 contamination.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 10:30:49 PM

Samples: Workbook = Alexander Reservoir Sediment Quality Statistics 2007.xls / Sheet = Po-210 / Range = 'Po-210'\\$C\$3:\\$F\\$12 / 9 rows and 4 columns Hypothesized difference (D): 0

Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	7.099
K (Critical value)	7.815
DF	3
p-value (Two-tailed)	0.069
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

Ha: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H₀ while it is true is 6.88%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/28/2008 at 4:10:57 PM

Sample 1: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = Po-210 / Range = 'Po-210'|\$E\$3:\$E\$12 / 9 rows and 1 column Sample 2: Workbook = Alexander Reservoir Sediment Quality Statistics 2007 (03-28-08).xls / Sheet = Po-210 / Range = 'Po-210'|\$F\$3:\$E\$12 / 9 rows and 1 column Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	9	0	9	0.490	1.200	0.919	0.211
M10 Affected	9	0	9	0.140	2.400	1.238	0.639

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.444
p-value	0.15
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H₀.

The risk to reject the null hypothesis H₀ while it is true is 14.97%.

Arsenic, mg/kg dw

RI Control RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
6.2 12	3.6	2.1	3.2	16
5.3	24	2.6	12	23
12	47	8.4	42	29
12		9.2		62
19		18		64
29		33		97
31		35		160
34				
44				
45				
46				
49				
56				
88				

6.2 33 24 9.2 12 62 RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: No evidence of As contamination. Historically: No evidence of As contamination.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/21/2008 at 3:42:38 PM

Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = As / Range = AsI\$A\$3:\$F\$17 / 14 rows and 6 columns Hypothesized difference (D): 0

Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	10.247
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.069
alpha	0.050

Test interpretation:

- H₀: The samples are not significantly different.
- H_a: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H₀.

The risk to reject the null hypothesis H₀ while it is true is 6.85%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 2:09:47 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = As / Range = As |\$E\$3:\$E\$6 / 3 rows and 1 column Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = As / Range = As |\$F\$3:\$F\$10 / 7 rows and 1 column Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	3.240	41.800	18.913	20.267
M10 Affected	7	0	7	15.600	160.000	64.329	50.892

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.667
p-value	0.13
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

 H_a : The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is greater than the significance level alpha = 0.05, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H₀ while it is true is 12.50%.

Cadmium, mg/kg dw

Caumum,	ilig/kg uw				
RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
11	8.6	0.30	1.4	0.42	5.1
	8.9	0.38	3.4	0.65	14
	14	0.47	4.8	0.70	15
	17		10		15
	17		12		18
	20		14		19
	20		51		40
	24				
	27				
	28				
	29				
	38				
	56				
	61				

Cadmium, rank

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
14	11	1	7	3	10
	12	2	8	5	17
	17	4	9	6	19.5
	21.5		13		19.5
	21.5		15		23
	25.5		17		24
	25.5		33		32
	27				
	28				
	29				
	30				
	31				
	34				
	35				

RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: Cd contamination is present.

Historically: Cd contamination has been present, but does not appear to be increasing.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/21/2008 at 3:49:02 PM

Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Cd / Range = Cdl\$A\$3:\$F\$17 / 14 rows and 6 columns Hypothesized difference (D): 0

Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	19.989
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.001
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a .

The risk to reject the null hypothesis H_0 while it is true is lower than 0.13%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	1	14.0	14.0	
RI Affected	14	348.0	24.9	55.7
M05 Control	3	7.0	2.3	2.3
M05 Affected	7	102.0	14.6	80.0
M10 Control	3	14.0	4.7	2.3
M10 Affected	7	145.0	20.7	45.8

ANOVA

ANOVA						
Source of Variation	SS	df	MS		F	р
Between Groups	2,077.81	5		415.56	8.10	0.000070
Within Groups	1,488.69	29		51.33		
Total	3,566.50	34				

Fisher's Least Significant Difference

	Comparison		1.1	LSD _{0.050} significance	Э
RI Control	٧.	RI Affected	10.9	15.2	
RI Control	٧.	M05 Control	11.7	16.9	
RI Control	٧.	M05 Affected	0.6	15.7	
RI Control	٧.	M10 Control	9.3	16.9	
RI Control	٧.	M10 Affected	6.7	15.7	
RI Affected	٧.	M05 Control	22.5	9.3 !	
RI Affected	٧.	M05 Affected	10.3	6.8 !	
RI Affected	٧.	M10 Control	20.2	9.3 !	
RI Affected	٧.	M10 Affected	4.1	6.8	
M05 Control	٧.	M05 Affected	12.2	10.1 !	
M05 Control	٧.	M10 Control	2.3	12.0	
M05 Control	٧.	M10 Affected	18.4	10.1 !	
M05 Affected	٧.	M10 Control	9.9	10.1	
M05 Affected	٧.	M10 Affected	6.1	7.8	
M10 Control	٧.	M10 Affected	16.0	10.1 !	

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 4:36:29 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Cd! / Range = 'Cd!'!\$E\$3:\$E\$6 / 3 rows and 1 column

Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Cd! / Range = 'Cd!'!\$F\$3:\$F\$10 / 7 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	0.420	0.704	0.591	0.150
M10 Affected	7	0	7	5.080	40.300	17.869	10.812

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	1.000
p-value	0.0083
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

Ha: The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is lower than the significance level alpha = 0.05, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a . The risk to reject the null hypothesis H_0 while it is true is lower than 0.83%.

Copper, mg	/kg c	iw
------------	-------	----

RI Control RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
2.7 4.0	3.2	0.91	4.3	7.7
8.4	6.4	2.8	4.5	8.6
8.4	8.6	3.9	5.2	8.8
9.4		5.1		9.1
10		5.2		10
12		6.4		12
16		16		100
18				
19				
22				
28				
31				
43				
76				

Copper, rank

RI Control RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
2 6	4	1	7	14
15.5	12.5	3	8	17.5
15.5	17.5	5	10.5	19
21	26.5	9		20
22.5		10.5		22.5
24.5		12.5		24.5
26.5				35
28				
29				
30				
31				
32				
33				
34				

9.1 2.7 5.1 4.5 RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: Cu contamination is present.
Historically: Cu contamination has been present at times, but does not appear to be increasing.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/21/2008 at 5:21:59 PM Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Cu / Range = Cu!\$A\$3:\$F\$17 / 14 rows and 6 columns Hypothesized difference (D): 0 Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	18.233
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.003
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a. The risk to reject the null hypothesis H₀ while it is true is lower than 0.27%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	1	2.0	2.0	
RI Affected	14	348.5	24.9	65.1
M05 Control	4	60.5	15.1	88.6
M05 Affected	6	41.0	6.8	20.5
M10 Control	3	25.5	8.5	3.3
M10 Affected	7	152.5	21.8	45.4

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	2,073.46	5	414.69	8.05	0.000073
Within Groups	1,493.04	29	51.48		
Total	3,566.50	34			

Fisher's Least Significant Difference

	Cor	mparison	11	LSD _{0.050}	significance
RI Control	v.	RI Affected	22.9	15.2	!
RI Control	v.	M05 Control	13.1	16.4	
RI Control	v.	M05 Affected	4.8	15.9	
RI Control	V.	M10 Control	6.5	16.9	
RI Control	V.	M10 Affected	19.8	15.7	!
RI Affected	V.	M05 Control	9.8	8.3	!
RI Affected	v.	M05 Affected	18.1	7.2	!
RI Affected	v.	M10 Control	16.4	9.3	!
RI Affected	V.	M10 Affected	3.1	6.8	
M05 Control	V.	M05 Affected	8.3	9.5	
M05 Control	V.	M10 Control	6.6	11.2	
M05 Control	v.	M10 Affected	6.7	9.2	
M05 Affected	v.	M10 Control	1.7	10.4	
M05 Affected	V.	M10 Affected	15.0	8.2	!
M10 Control	v.	M10 Affected	13.3	10.1	!

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 2:50:57 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Cu!/Range = 'Cu!'!\$E\$3:\$E\$6 / 3 rows and 1 column

Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Cu ! / Range = 'Cu !'!\$F\$3:\$F\$10 / 7 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	4.330	5.210	4.663	0.477
M10 Affected	7	0	7	7.740	100.000	22.337	34.274

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	1.000
p-value	0.0083
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H0: The distribution of the two samples is not significantly different.

Ha: The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0, and accept the alternative hypothesis Ha.

The risk to reject the null hypothesis H0 while it is true is lower than 0.83%.

Nickel, mg/kg dw

RI Control RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
55 16	30	2.2	16	17
25	30	4.8	22	21
25	50	12	28	29
27		12		30
28		20		38
31		44		59
35		88		80
35				
38				
39				
45				
72				
86				
150				

55 35 30 12 22 30 RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: No evidence of Ni contamination. Historically: No evidence of Ni contamination.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/21/2008 at 5:48:40 PM

Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Ni / Range = Ni!\$A\$3:\$F\$17 / 14 rows and 6 columns Hypothesized difference (D): 0

Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	7.682
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.175
alpha	0.050

Test interpretation:

- H₀: The samples are not significantly different.
- H_a: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H₀ while it is true is 17.47%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 5:09:03 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Ni / Range = Nil\$\\$13:\\$E\\$6 / 3 rows and 1 column Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Ni / Range = Nil\\$F\\$3:\\$F\\$10 / 7 rows and 1 column Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	16.100	27.500	21.867	5.701
M10 Affected	7	0	7	17.400	79.500	39.300	22.383

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.714
p-value	0.083
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

 H_a : The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is greater than the significance level alpha = 0.05, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H_0 while it is true is 8.33%.

മ	lenium,	maka	dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
0.60	0.80	0.77	0.29	0.45	1.3
0.60	1.1	0.79	0.96	0.60	3.4
	1.1	0.92	1.1	0.60	4.0
	1.2		3.3		4.0
	1.4		4.7		5.7
	1.9		14		35
	3.3		100		100
	3.6				
	3.8				
	4.8				
	5.2				
	7.3				
	20				
	63				

Selenium, rank

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
4.5	9	7	1	2	16
4.5	13	8	11	4.5	21
	13	10	13	4.5	24.5
	15		19.5		24.5
	17		26		29
	18		31		33
	19.5		35.5		35.5
	22				
	23				
	27				
	28				
	30				
	32				
	34				

| 3.5 | 3.3 | 4.0 |
| 0.60 | 0.79 | 0.60 |
| RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: Se contamination is present.

Historically: Se contamination has been present, but does not appear to be increasing.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 11:14:40 AM Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Se ...! / Range = 'Se ...! | \$A\$3:\$F\$17 / 14 rows and 6 columns Hypothesized difference (D): 0 Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	17.243
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.004
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a. The risk to reject the null hypothesis H₀ while it is true is lower than 0.41%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	2	9.0	4.5	0.0
RI Affected	14	300.5	21.5	61.0
M05 Control	3	25.0	8.3	2.3
M05 Affected	7	137.0	19.6	147.9
M10 Control	3	11.0	3.7	2.1
M10 Affected	7	183.5	26.2	46.2

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	1,909.79	5	381.96	5.83	0.00071
Within Groups	1,966.71	30	65.56		
Total	3,876.50	35			

Fisher's Least Significant Difference

i ionor o Louot Orgi	illiodili Dillicici				
	Compa	rison	11	LSD _{0.050}	significance
RI Control	v.	RI Affected	17.0	12.5	!
RI Control	v.	M05 Control	3.8	15.1	
RI Control	v.	M05 Affected	15.1	13.3	!
RI Control	٧.	M10 Control	8.0	15.1	
RI Control	٧.	M10 Affected	21.7	13.3	!
RI Affected	v.	M05 Control	13.1	10.5	!
RI Affected	v.	M05 Affected	1.9	7.7	
RI Affected	v.	M10 Control	17.8	10.5	!
RI Affected	٧.	M10 Affected	4.8	7.7	
M05 Control	٧.	M05 Affected	11.2	11.4	
M05 Control	٧.	M10 Control	4.7	13.5	
M05 Control	٧.	M10 Affected	17.9	11.4	!
M05 Affected	٧.	M10 Control	15.9	11.4	!
M05 Affected	٧.	M10 Affected	6.6	8.8	
M10 Control	٧.	M10 Affected	22.5	11.4	!

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 5:29:12 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Se!/Range = 'Se!'!\$E\$3:\$E\$6 / 3 rows and 1 column

Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Se!/Range = 'Se!'!\$F\$3:\$F\$10 / 7 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	0.450	0.600	0.550	0.087
M10 Affected	7	0	7	1.300	100.000	21.914	36.380

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	1.000
p-value	0.0083
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

H_a: The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is lower than the significance level alpha = 0.05, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a . The risk to reject the null hypothesis H_0 while it is true is lower than 0.83%.

Silver, mg/kg dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
0.10	0.080	0.034	0.039	0.046	0.17
	0.11	0.14	0.060	0.049	0.17
	0.17	0.15	0.11	0.14	0.18
	0.25		0.11		0.22
	0.35		0.12		0.32
	0.50		0.25		0.43
	1.3		0.46		0.55
	1.8				
	1.8				
	1.8				
	1.8				
	1.8				
	1.8				
	1.8				

Silver, rank

RI Control RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
7 6	1	2	3	16
9	12.5	5	4	16
16	14	9	12.5	18
20.5		9		19
23		11		22
26		20.5		24
28		25		27
32				
32				
32				
32				
32				
32				
32				
	7 6 9 16 20.5 23 26 28 32 32 32 32 32 32	7 6 1 9 12.5 16 14 20.5 23 26 28 32 32 32 32 32 32 32 32	7 6 1 2 9 12.5 5 16 14 9 20.5 9 23 11 26 20.5 28 25 32 32 32 32 32 32 32 32 32	9 12.5 5 4 16 14 9 12.5 20.5 9 23 11 26 20.5 28 25 32 32 32 32 32 32 32 32 32 32

Currently: Ag contamination is present.

Historically: Ag contamination has been present, but it may be decreasing.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/24/2008 at 11:30:43 AM Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Ag ...! / Range = 'Ag ...! / \$43:\$F\$17 / 14 rows and 6 columns Hypothesized difference (D): 0 Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	17.233
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.004
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a .

The risk to reject the null hypothesis $H_{\rm 0}$ while it is true is lower than 0.41%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	1	7.0	7.0	
RI Affected	14	352.5	25.2	82.7
M05 Control	3	27.5	9.2	50.6
M05 Affected	7	81.5	11.6	68.1
M10 Control	3	19.5	6.5	27.3
M10 Affected	7	142.0	20.3	17.6

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	1,792.74	5	358.55	5.96	0.00066
Within Groups	1,744.26	29	60.15		
Total	3,537.00	34			

Fisher's Least Significant Difference

I ISHCI S Ecast Olgin	nount Dincient	C			
Comparison		son		LSD _{0.050}	significance
RI Control	V.	RI Affected	18.2	16.4	!
RI Control	V.	M05 Control	2.2	18.3	
RI Control	V.	M05 Affected	4.6	17.0	
RI Control	V.	M10 Control	0.5	18.3	
RI Control	V.	M10 Affected	13.3	17.0	
RI Affected	V.	M05 Control	16.0	10.1	!
RI Affected	V.	M05 Affected	13.5	7.3	!
RI Affected	V.	M10 Control	18.7	10.1	!
RI Affected	V.	M10 Affected	4.9	7.3	
M05 Control	V.	M05 Affected	2.5	10.9	
M05 Control	V.	M10 Control	2.7	13.0	
M05 Control	V.	M10 Affected	11.1	10.9	!
M05 Affected	V.	M10 Control	5.1	10.9	
M05 Affected	V.	M10 Affected	8.6	8.5	!
M10 Control	V.	M10 Affected	13.8	10.9	!

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 5:39:20 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Ag ! / Range = 'Ag !'!\$E\$3:\$E\$6 / 3 rows and 1 column

Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Ag ! / Range = 'Ag !'!\$F\$3:\$F\$10 / 7 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	0.046	0.140	0.078	0.053
M10 Affected	7	0	7	0.170	0.550	0.291	0.149

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	1.000
p-value	0.0083
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

H_a: The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is lower than the significance level alpha = 0.05, one should reject the null hypothesis H_0 , and accept the alternative hypothesis H_a .

The risk to reject the null hypothesis H_0 while it is true is lower than 0.83%.

anad		

· anaaran,	99				
RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
23	50	32	5.1	32	62
	53	50	14	41	80
	86	74	22	80	84
	87		41		87
	92		42		99
	100		50		100
	100		84		120
	100				
	110				
	120				
	130				
	140				
	150				
	160				

Vanadium, rank					
RI Control RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected	
4 11	5.5	1	5.5	14	
13	11	2	7.5	16.5	
20	15	3	16.5	18.5	
21.5		7.5		21.5	
23		9		24	
26.5		11		26.5	
26.5		18.5		30.5	
26.5					
29					
30.5					
32					
33					
34					
35					

50 41 41 RI Control RI Affected M05 Control M05 Affected M10 Control M10 Affected

Currently: V contamination is present. Historically: V contamination has been present at times, but does not to be increasing.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/21/2008 at 6:25:00 PM

Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = V / Range = VI\$A\$3:\$F\$17 / 14 rows and 6 columns

Hypothesized difference (D): 0 Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	21.932
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.001
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

H_a: The samples do not come from the same population.

As the computed p-value is lower than the significance level alpha = 0.050, one should reject the null hypothesis H₀, and accept the alternative hypothesis H_a. The risk to reject the null hypothesis H₀ while it is true is lower than 0.05%.

Ties have been detected in the data and the appropriate corrections have been applied.

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RI Control	1	4.0	4.0	
RI Affected	14	361.5	25.8	55.3
M05 Control	3	31.5	10.5	22.8
M05 Affected	7	52.0	7.4	38.0
M10 Control	3	29.5	9.8	34.3
M10 Affected	7	151.5	21.6	33.7

ANOVA

Source of Variation	SS	df	MS	F	р
Between Groups	2,296.46	5	459.29	10.54	0.0000077
Within Groups	1,263.54	29	43.57		
Total	3,560.00	34			

Fisher's Least Significant Difference

Jimount Di	Horonoc			
Co	omparison	1.1	LSD _{0.050}	significance
V.	RI Affected	21.8	14.0	!
V.	M05 Control	6.5	15.6	
V.	M05 Affected	3.4	14.4	
V.	M10 Control	5.8	15.6	
V.	M10 Affected	17.6	14.4	!
V.	M05 Control	15.3	8.6	!
٧.	M05 Affected	18.4	6.2	!
٧.	M10 Control	16.0	8.6	!
٧.	M10 Affected	4.2	6.2	
٧.	M05 Affected	3.1	9.3	
V.	M10 Control	0.7	11.0	
٧.	M10 Affected	11.1	9.3	!
٧.	M10 Control	2.4	9.3	
٧.	M10 Affected	14.2	7.2	!
٧.	M10 Affected	11.8	9.3	!
	V. V	v. M05 Control v. M05 Affected v. M10 Control v. M10 Affected v. M05 Control v. M05 Affected v. M05 Affected v. M10 Control v. M10 Affected	Comparison V. RI Affected 21.8 V. M05 Control 6.5 V. M05 Affected 3.4 V. M10 Control 5.8 V. M10 Control 15.3 V. M05 Control 15.3 V. M05 Control 18.4 V. M05 Affected 18.4 V. M10 Control 16.0 V. M10 Affected 4.2 V. M05 Affected 3.1 V. M10 Control 0.7 V. M10 Control 0.7 V. M10 Control 2.4 V. M10 Control 2.4 V. M10 Affected 11.1 V. M10 Control 2.44 V. M10 Affected 14.2 V. M10 Affected 14.4 V. M10 Affected 14.	Comparison I LSD _{0.090} v. RI Affected 21.8 14.0 v. M05 Control 6.5 15.6 v. M05 Affected 3.4 14.4 v. M10 Control 5.8 15.6 v. M10 Affected 15.3 8.6 v. M05 Control 15.3 8.6 v. M10 Control 16.0 8.6 v. M10 Control 4.2 6.2 v. M10 Affected 3.1 9.3 v. M10 Control 0.7 11.0 v. M10 Affected 11.1 9.3 v. M10 Affected 11.1 9.3 v. M10 Affected 11.1 9.3 v. M10 Affected 12.4 9.3 v. M10 Affected 14.2 7.2

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 6:11:45 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = V! / Range = 'V!'!\$E\$25:\$E\$28 / 3 rows and 1 column Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = V! / Range = 'V!'!\$F\$25:\$F\$32 / 7 rows and 1 column

Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation		
M10 Control	3	0	3	5.500	16.500	9.833	5.859		
M10 Affected	7	0	7	14.000	30.500	21.643	5.807		

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.714
p-value	0.083
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

H_a: The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is greater than the significance level alpha = 0.05, one should accept the null hypothesis H₀.

The risk to reject the null hypothesis H₀ while it is true is 8.33%.

Polonium-210, pCi/g dw

RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected
0.67	0.55	0.69	0.62	0.32	0.56
	0.60	0.96	1.1	0.92	0.76
	0.60	1.5	1.6	1.6	0.98
	0.60		2.0		1.2
	0.70		2.1		1.4
	0.80		2.3		1.4
	1.0		2.8		1.6
	1.4				
	1.5				
	1.5				
	1.6				
	2.3				
	2.6				
	3.3				

0.67	1.2	0.96	2.0	0.92	1.2
RI Control	RI Affected	M05 Control	M05 Affected	M10 Control	M10 Affected

Currently: No evidence of Po-210 contamination. Historically: No evidence of Po-210 contamination.

XLSTAT 2006 - Comparison of k samples (Kruskal-Wallis, Friedman, ...) - on 3/21/2008 at 6:00:28 PM

Samples: Workbook = Soda Creek Sediment Quality Statistics 2007.xls / Sheet = Po-210 / Range = 'Po-210'\\$A\$3:\\$F\\$17 / 14 rows and 6 columns Hypothesized difference (D): 0

Significance level (%): 5

Kruskal-Wallis test:

K (Observed value)	5.247
K (Critical value)	11.070
DF	5
p-value (Two-tailed)	0.386
alpha	0.050

Test interpretation:

H₀: The samples are not significantly different.

Ha: The samples do not come from the same population.

As the computed p-value is greater than the significance level alpha = 0.050, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H₀ while it is true is 38.65%.

Ties have been detected in the data and the appropriate corrections have been applied.

XLSTAT 2006 - Comparison of two distributions (Kolmogorov-Smirnov, ...) - on 3/27/2008 at 5:16:33 PM

Sample 1: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Po-210 / Range = 'Po-210'\\$E\\$3:\\$E\\$6 / 3 rows and 1 column Sample 2: Workbook = Soda Creek Sediment Quality Statistics 2007 (03-27-08).xls / Sheet = Po-210 / Range = 'Po-210'\\$F\\$3:\\$F\\$10 / 7 rows and 1 column Hypothesized difference (D): 0

Significance level (%): 5

Summary statistics:

Variable	Observations	Obs. with missing data	Obs. without missing data	Minimum	Maximum	Mean	Std. deviation
M10 Control	3	0	3	0.320	1.600	0.947	0.640
M10 Affected	7	0	7	0.560	1.600	1.129	0.378

Two-sample Kolmogorov-Smirnov test / Upper-tailed test:

D	0.381
p-value	0.44
alpha	0.050

The p-value is computed using an exact method.

Test interpretation:

H₀: The distribution of the two samples is not significantly different.

Ha: The distribution of the first sample is shifted to the right of the distribution of the second sample.

As the computed p-value is greater than the significance level alpha = 0.05, one should accept the null hypothesis H_0 .

The risk to reject the null hypothesis H_{0} while it is true is 44.17%.

5.0 DATA

Tables 3.19 and 3.20 present the Alexander Reservoir and Soda Creek analytical data, respectively.

Station ID Latitude Longitude Result Flag F	Table 3.19: 2007 Sediment Data (mg/kg dw), Alexander Reservoir																		
AR-1 42 39 16.67373 111 37 38.07183 38 36 2.4 43 21 7.1 0.35 120 AR-2 42 39 16.23926 111 37 33.21025 47 26 1.5 36 20 4.3 0.34 1110 AR-3 42 39 16.51582 111 37 28.83832 12 13 1.8 22 9.7 2.1 0.17 35 AR-4 42 39 15.59626 111 37 28.83832 12 13 1.8 22 9.7 0.1 0.17 35 AR-5 42 39 16.52691 111 37 16.72130 9.9 7.7 0.70 24 6.8 1.9 0.087 24 AR-6 42 39 14.94050 111 37 19.67915 8.1 3.4 0.14 15 4.3 1.0 < 0.055 U 13 AR-7 42 39 13.72165 111 37 23.00560 9.6 2.0 1.1 1 13 3 3.2 < 0.71 U 0.057 U 8.7 AR-8 42 39 14.48981 111 37 30.01525 4.9 4.8 1.1 13 3 8.5 1.1 0.1 0.11 20 AR-9 avg 42 39 13.96611 111 37 36.01897 3.6 2.4 1.2 10 6.8 < 0.86 U 0.10 J 1 4 AR-9-R1 43 39 13.96611 112 37 36.01897 3.3 2.3 0.72 10 6.8 < 0.86 U 0.10 J 1 15 AR-9-R2 44 39 13.96611 113 37 36.01897 3.3 2.4 1.8 10 6.77 < 0.86 U 0.11 J 15 AR-9-R3 45 39 13.96611 113 37 36.01897 3.4 2.4 1.8 10 6.75 < 0.88 U 0.009 J 1.4 AR-10-R3 45 39 0.38363 111 37 28.48255 3.3 0.77 0.93 11 8.8 8 < 0.86 U 0.11 J 16 AR-10-R2 44 39 0.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 7.2 0.85 U 0.09 J 1.4 AR-10-R2 44 39 0.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 7.2 0.85 U 0.076 14 AR-10-R2 44 39 0.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 7.3 < 0.85 U 0.076 14 AR-10-R3 42 38 58.1901 11137 13.181436 3.3 0.59 0.83 9.0 7.1 0.80 U 0.090 I 15 AR-13 42 38 58.16957 11137 10.03349 2.7 0.660 0.82 9.0 7.3 < 0.83 U 0.090 I 15		Aresen	ic	Cadmi	ım	Polonium-	210	Nick	le	Coppe	r	Seleniu	ım	Silver		Vanadi	ium		
AR-1	Station ID	Latitude	Longitude	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Copper	Flag	Result	Flag	Result	Flag	Result	Flag
AR-2								AFFECTED											
AR-3	AR-1	42 39 16.67373	111 37 38.07183	38		36		2.4		43		21		7.1		0.35		120	
AR-4 42 39 15.99626 111 37 25.34101 7.4 3.9 1.2 17 7.5 < 0.91 U 0.094 21 AR-5 42 39 16.52691 111 37 16.72130 9.9 7.7 0.70 24 6.8 1.9 0.087 24 AR-6 42 39 14.94050 111 37 19.67915 8.1 3.4 0.14 15 4.3 1.0 < 0.055 U 13 AR-7 42 39 13.72165 111 37 23.00560 9.6 2.0 1.1 13 3 3.2 < 0.71 U < 0.057 U 8.7 AR-8 42 39 14.48981 111 37 30.71525 4.9 4.8 1.1 13 8.5 1.1 0.11 20 AR-9 avg 42 39 13.96611 111 37 36.01897 3.6 2.4 1.2 10 6.8 < 0.86 U 0.10 J 14 AR-9-R1 43 39 13.96611 112 37 36.01897 3.3 2.3 0.72 10 6.77 < 0.86 U 0.11 J 13 AR-9-R2 44 39 13.96611 113 37 36.01897 3.4 2.4 1.8 10 6.77 < 0.86 U 0.11 J 15 AR-9-R3 45 39 13.96611 114 37 36.01897 3.4 2.4 1.8 10 6.75 < 0.88 U 0.092 J 14 AR-10 avg 42 39 0.38363 111 37 28.48255 3.3 0.77 0.93 11 8.8 <0.80 U 0.11 J 16 AR-10-R1 43 39 0.38363 112 37 28.48255 3.4 0.84 0.66 11 9.37 <0.86 U 0.11 J 16 AR-10-R2 44 39 0.38363 113 37 28.48255 3.4 0.84 0.66 11 9.9.66 <0.86 U 0.12 J 17 AR-10-R2 44 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 0.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-11 42 38 59.43636 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.86 U 0.090 J 16 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.80 U 0.090 J 16	AR-2	42 39 16.23926	111 37 33.21025	47		26		1.5		36		20		4.3		0.34		110	
AR-5	AR-3	42 39 16.51582	111 37 28.83832	12		13		1.8		22		9.7		2.1		0.17		35	
AR-6 42 39 14.94050 111 37 19.67915 8.1 3.4 0.14 15 4.3 1.0 AR-7 42 39 13.72165 111 37 23.00560 9.6 2.0 1.1 13 3 3.2 AR-8 42 39 14.48981 111 37 30.71525 4.9 4.8 1.1 13 8.5 1.1 0.11 20 AR-9 avg 42 39 13.96611 111 37 36.01897 3.6 2.4 1.2 10 6.8 AR-9-R1 43 39 13.96611 112 37 36.01897 3.3 2.3 0.72 10 6.77 AR-9-R2 44 39 13.96611 113 37 36.01897 4.0 2.6 0.92 11 6.99 AR-9-R3 45 39 13.96611 114 37 36.01897 3.4 2.4 1.8 10 6.75 AR-9-R3 45 39 13.96611 114 37 36.01897 3.4 2.4 1.8 10 6.75 AR-10-R1 43 39 00.38363 112 37 28.48255 3.3 0.77 0.93 11 8.8 AR-10-R2 44 39 00.38363 113 37 28.48255 3.5 0.79 0.86 11 9.66 AR-10-R2 44 39 00.38363 113 37 28.48255 3.0 0.67 1.3 10 7.29 AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82	AR-4	42 39 15.99626	111 37 25.34101	7.4		3.9		1.2		17		7.5		< 0.91	U	0.094		21	
AR-7	AR-5	42 39 16.52691	111 37 16.72130	9.9		7.7		0.70		24		6.8		1.9		0.087		24	
AR-8	AR-6	42 39 14.94050	111 37 19.67915	8.1		3.4		0.14		15		4.3		1.0		< 0.055	U	13	
AR-9 avg 42 39 13.96611 111 37 36.01897 3.6 2.4 1.2 10 6.8 < 0.86 U 0.10 J 14 AR-9-R1 43 39 13.96611 112 37 36.01897 3.3 2.3 0.72 10 6.77 < 0.86 U 0.11 J 13 AR-9-R2 44 39 13.96611 113 37 36.01897 4.0 2.6 0.92 11 6.99 < 0.84 U 0.10 J 15 AR-9-R3 45 39 13.96611 114 37 36.01897 3.4 2.4 1.8 10 6.75 < 0.88 U 0.092 J 14 AR-10 avg 42 39 00.38363 111 37 28.48255 3.3 0.77 0.93 11 8.8 < 0.83 U 0.11 J 16 AR-10-R1 43 39 00.38363 112 37 28.48255 3.5 0.79 0.86 11 9.66 < 0.86 U 0.12 J 17 AR-10-R2 44 39 00.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10-R3 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 <0.85 U 0.076 14 AR-11 42 38 59.43636 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 <0.83 U 0.090 16	AR-7	42 39 13.72165	111 37 23.00560	9.6		2.0		1.1		13		3.2		< 0.71	U	< 0.057	U	8.7	
AR-9-R1 43 39 13.96611 112 37 36.01897 3.3 2.3 0.72 10 6.77 <0.86 U 0.11 J 13 AR-9-R2 44 39 13.96611 113 37 36.01897 4.0 2.6 0.92 11 6.99 <0.84 U 0.10 J 15 AR-9-R3 45 39 13.96611 114 37 36.01897 3.4 2.4 1.8 10 6.75 <0.88 U 0.092 J 14 AR-10 avg 42 39 00.38363 111 37 28.48255 3.3 0.77 0.93 11 8.8 <0.83 U 0.11 J 16 AR-10-R1 43 39 00.38363 112 37 28.48255 3.5 0.79 0.86 11 9.66 <0.86 U 0.12 J 17 AR-10-R2 44 39 00.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 <0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 <0.83 U 0.099 16	AR-8	42 39 14.48981	111 37 30.71525	4.9		4.8		1.1		13		8.5		1.1		0.11		20	
AR-9-R2 44 39 13.96611 113 37 36.01897 4.0 2.6 0.92 111 6.99 <0.84 U 0.10 J 15 AR-9-R3 45 39 13.96611 114 37 36.01897 3.4 2.4 1.8 10 6.75 <0.88 U 0.092 J 14 AR-10 avg 42 39 00.38363 111 37 28.48255 3.3 0.77 0.93 11 8.8 <0.83 U 0.11 J 16 AR-10-R1 43 39 00.38363 112 37 28.48255 3.5 0.79 0.86 11 9.66 <0.86 U 0.12 J 17 AR-10-R2 44 39 00.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 <0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 <0.83 U 0.090 16	AR-9 avg	42 39 13.96611	111 37 36.01897	3.6		2.4		1.2		10		6.8		< 0.86	U	0.10	J	14	
AR-9-R3	AR-9-R1	43 39 13.96611	112 37 36.01897	3.3		2.3		0.72		10		6.77		< 0.86	U	0.11	J	13	
AR-10 avg 42 39 00.38363 111 37 28.48255 3.3 0.77 0.93 11 8.8 < 0.83 U 0.11 J 16 AR-10-R1 43 39 00.38363 112 37 28.48255 3.5 0.79 0.86 11 9.66 < 0.86 U 0.12 J 17 AR-10-R2 44 39 00.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 < 0.79 U 0.13 J 16 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 < 0.83 U 0.09 J 14 CONTROL AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 < 0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 < 0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 < 0.83 U 0.090 16	AR-9-R2	44 39 13.96611	113 37 36.01897	4.0		2.6		0.92		11		6.99		< 0.84	U	0.10	J	15	
AR-10-R1 43 39 00.38363 112 37 28.48255 3.5 0.79 0.86 11 9.66 < 0.86 U 0.12 J 17 AR-10-R2 44 39 00.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 < 0.79 U 0.13 J 16 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 < 0.83 U 0.09 J 14 CONTROL AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 < 0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 < 0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 < 0.83 U 0.090 16	AR-9-R3	45 39 13.96611	114 37 36.01897	3.4		2.4		1.8		10		6.75		< 0.88	U	0.092	J	14	
AR-10-R2 44 39 00.38363 113 37 28.48255 3.4 0.84 0.66 11 9.37 <0.79 U 0.13 J 16 AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 CONTROL AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 <0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 <0.83 U 0.090 16	AR-10 avg	42 39 00.38363	111 37 28.48255	3.3		0.77		0.93		11		8.8		< 0.83	U	0.11	J	16	
AR-10-R3 45 39 00.38363 114 37 28.48255 3.0 0.67 1.3 10 7.29 <0.83 U 0.09 J 14 CONTROL AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 <0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 <0.81 U 0.080 15 AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 <0.83 U 0.090 16	AR-10-R1	43 39 00.38363	112 37 28.48255	3.5		0.79		0.86		11		9.66		< 0.86	U	0.12	J	17	
CONTROL AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 < 0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 < 0.81	AR-10-R2	44 39 00.38363	113 37 28.48255	3.4		0.84		0.66		11		9.37		< 0.79	U	0.13	J	16	
AR-11 42 38 59.43636 111 37 21.58064 2.9 0.61 1.2 8.7 7.3 < 0.85 U 0.076 14 AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 < 0.81	AR-10-R3	45 39 00.38363	114 37 28.48255	3.0		0.67		1.3		10		7.29		< 0.83	U	0.09	J	14	
AR-12 42 38 58.11901 111 37 13.81436 3.3 0.59 0.83 9.0 7.1 < 0.81								CONTROL											
AR-13 42 38 58.16957 111 37 10.03349 2.7 0.60 0.82 9.0 7.3 < 0.83 U 0.090 16	AR-11	42 38 59.43636	111 37 21.58064	2.9		0.61		1.2		8.7		7.3		< 0.85	U	0.076		14	
	AR-12	42 38 58.11901	111 37 13.81436	3.3		0.59		0.83		9.0		7.1		< 0.81	U	0.080		15	
AR-14 42 38 58.12848 111 37 06.22245 2.9 0.68 0.83 10 7.8 < 0.84 U 0.095 18	AR-13	42 38 58.16957	111 37 10.03349	2.7		0.60		0.82		9.0		7.3		< 0.83	U	0.090		16	
	AR-14	42 38 58.12848	111 37 06.22245	2.9		0.68		0.83		10		7.8		< 0.84	U	0.095		18	
AR-15 42 38 59.96908 111 37 08.62329 2.9 0.50 1.1 7.8 6.6 < 0.81 U 0.077 14	AR-15	42 38 59.96908	111 37 08.62329	2.9		0.50		1.1		7.8		6.6		< 0.81	U	0.077		14	
AR-16 42 39 00.41757 111 37 16.36620 2.4 0.44 1.0 7.0 5.4 < 0.69 U 0.064 11	AR-16	42 39 00.41757	111 37 16.36620	2.4		0.44		1.0		7.0		5.4		< 0.69	U	0.064		11	
AR-17 42 39 01.78020 111 37 19.23613 1.8 0.26 0.49 4.0 3.2 < 0.62 U < 0.050 U 7.4	AR-17	42 39 01.78020	111 37 19.23613	1.8		0.26		0.49		4.0		3.2		< 0.62	U	< 0.050	U	7.4	
AR-18 42 39 02.87615 111 37 28.55387 2.7 0.64 1.1 10 8.7 < 0.88 U 0.10 18	AR-18	42 39 02.87615	111 37 28.55387	2.7		0.64		1.1		10		8.7		< 0.88	U	0.10		18	

avg - Lab replicates have been averaged.

(U) - The material was analyzed for, but not detected above the level of the associated value. The associated value is the simple reporting limit.

(J) - The result is an estimated quantity.

R1, R2, R3 - These denote lab generated QA replicates.

Table 3.20: 2007 Sediment Data (mg/kg dw), Soda Creek																		
			Arsenic		Cadmium		Polonium-210		Nickel		Copper		Selenium		Silver		Vanadium	
Station ID	Latitude	Longitude	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
AFFECTED																		
SC-4	42 40 14.32805	111 35 54.22960	64		40		1.0		80		12		100		0.22		120	
SC-5	42 39 59.98769	111 35 55.51840	16		19		1.4		59		8.8		35		0.43		62	
SC-6	42 39 44.15251	111 36 05.48682	23		18		1.2		38		10		5.7		0.17		100	
SC-7	42 39 34.35396	111 36 15.56945	29		15		1.4		30		9.1		4.0		0.17		87	
SC-8-avg	42 39 35.87813	111 36 32.40570	99		15		0.76		29		8.6		3.4		0.32	J	100	
SC-8-R1	43 39 35.87813	112 36 32.40570	110		13		0.92		29		7.5		2.8		0.24	J	99	
SC-8-R2	44 39 35.87813	113 36 32.40570	100		17		0.74		33		9.6		4.1		0.43		110	
SC-8-R3	45 39 35.87813	114 36 32.40570	86		14		0.62		25		8.8		3.3		0.28	J	92	
SC-9	42 39 35.98726	111 36 54.94849	160		14		0.56		17		7.7		4.0		0.18		80	
SC-10	42 39 17.24880	111 37 05.34616	62		5.1		0.76		21		100		1.3		0.55		84	
							CONTROI											
SC-1	42 42 36.29933	111 37 18.05155	3.2		0.70		0.93		16		4.5		< 1.2	U	< 0.93	U	32	
SC-2	42 42 00.24167	111 36 44.15931	12		0.65		0.32		28		4.3		< 0.90	U	0.14		80	
SC-3	42 40 39.89715	111 36 08.97724	42		0.42		1.6		22		5.2		< 1.2	U	< 0.98	U	41	

avg - Lab replicates have been averaged.

(U) - The material was analyzed for, but not detected above the level of the associated value. The associated value is the simple reporting limit.

(J) - The result is an estimated quantity

R1, R2, R3 - These denote lab generated QA replicates.

- Georgia Institute of Technology, March 2003. *Scientific Approaches for Transportation Research* (http://traffic.ce.gatech.edu/nchrp2045/v2chapter6.html). Prepared for National Coorporative Highway Research Program.
- Golder Associates, November 1997. *Monsanto. Selected Text from Phase I and Phase II remedial Investigations and Reports. Relating to Characterization of Soda Creek.* Prepared for Monsanto.
- Montgomery Watson Harza (MWH), October 2002. Final Work Plan for CERCLA Five-year Review. Monsanto Elemental Phosphorous Plant, Soda Springs, Idaho. Prepared for Monsanto.
- USEPA, April 1997. Record of Decision: Monsanto Chemical Company, Superfund Site, Caribou County, Idaho. USEPA Region X, Office of Environmental Cleanup.

TABLE OF CONTENTS

Data Validation Summary Report: 2nd Five-Year CERCLA Review – Sediment Samples

Table 1 – Summary of Triplicate and QA Split Sample Results for Metals

Table 2 – Summary of Triplicate and QA Split Sample Results for Radiological Parameter

GEL SDG 195901 - Metals

GEL SDG 195901 - Polonium-210

Attachment A – Radiochemical Data Verification and Validation

Attachment B – Data Validation_Worksheet GEL SDG 195901

GEL SDG 195904 – Metals

GEL SDG 195904 – Polonium-210

Attachment A – Radiochemical Data Verification and Validation

Attachment B – Data Validation_Worksheet GEL SDG 195904

GEL SDGs 195909 and 196021 – Metals

GEL SDG 195909 - Polonium-210

Attachment A – Radiochemical Data Verification and Validation

Attachment B – Data Validation_Worksheet GEL SDG 195909

GEL SDG 196021 - Polonium-210

Attachment A – Radiochemical Data Verification and Validation

Attachment B – Data Validation_Worksheet GEL SDG 196021

ACZ SDG L65816

DATA VALIDATION SUMMARY REPORT

2^{ND} FIVE-YEAR CERCLA REVIEW – SEDIMENT SAMPLES

This report is a summary of the data validation and quality control (QC) review conducted for sediment samples collected in October 2007 in support of the 2nd Five-Year CERCLA Review for the Monsanto Soda Springs Plant, located in Soda Springs, Idaho. This effort was completed on the behalf of Monsanto Elemental Phosphorous Plant. General Engineering Laboratories (GEL), located in Charleston, South Carolina, performed analyses on all primary, triplicate, and field blank samples. ACZ Laboratories (ACZ), located in Steamboat Springs, Colorado, was contracted to perform metals analysis on the quality assurance (QA) split samples. Sanford Cohen and Associates (SCA), located in Vienna, Virginia, was contracted to perform radionuclide analysis on QA split samples. All laboratories were selected prior to sampling and are proficient in the analysis of metals and radionuclides as requested by the United States Environmental Protection Agency (USEPA) Region 10 and the Idaho Department of Environmental Quality (IDEQ).

Data generated by GEL and ACZ were validated as specified in the Quality Assurance Project Plan (QAPP) portion of the 2nd Five-Year CERCLA Review Work Plan (MWH, 2007), and as referenced in the *Final Work Plan for CERCLA Five-Year Review* (MWH, 2002). The QAPP specified use of *USEPA National Functional Guidelines for Inorganic Data Review* (USEPA, 2004) to validate metals data. Radionuclide data were validated using applicable guidance specified in *Evaluation of Radiochemical Data Usability* (United States Department of Energy [USDOE], 1997b). Data validation reports were produced for each laboratory Sample Delivery Group (SDG), and are provided in Attachment A.

Sediment samples were collected and submitted to GEL where they were homogenized and dried. In addition, three equipment rinsate and three source water blank samples were collected and submitted to GEL. Three of the primary field samples were selected for triplicate and QA analyses. These three primary field samples were homogenized and split into four parts. One part of each sample was submitted to ACZ for metals analysis and SCA for radionuclide

analysis. The remaining three parts were identified as triplicate samples and analyzed by GEL. All sample submittals were made under chain-of-custody protocols.

GEL analyzed the primary samples for the following:

- Arsenic, cadmium, copper, nickel, selenium, and vanadium by USEPA Method SW6020.
- Polonium-210 (²¹⁰Po) by Environmental Measurements Laboratory (EML) Health and Safety Laboratory (HASL)-300 Manual, Section 4.5.4 (Po-01-RC: alpha ray spectrometry (USDOE, 1997a) and GEL's Standard Operating Procedure (SOP) GL-RAD-A-016 Rev #9.

ACZ analyzed the QA split samples for arsenic, cadmium, copper, nickel, selenium, and vanadium by SW6020, and SCA analyzed the QA split samples for Polonium-210 by EML HASL 300, Po-01-RC.

Data quality objectives (DQOs) are qualitative and quantitative statements that specify the quality of these data required to meet the goals of site investigation and/or to support decisions made in environmental management activities. Although analytical chemistry DQOs for the October 2007 sampling event were not specified in the Work Plan (MWH, 2007), chemical data generated from field samples are typically evaluated in terms of precision, accuracy, representativeness, completeness, and comparability. The results of laboratory quality control (QC) samples were evaluated against these parameters. QC sample results that fall outside the method- and laboratory-specified control criteria serve to signal unacceptable or biased data that may result in corrective action or qualification of data. The following is a summary review of these data, including data qualification that resulted from the data validation.

Precision and Accuracy

Precision is the degree of agreement among repeated measurements of the same characteristic under the same or similar conditions. Data precision indicates how consistent and reproducible the field sampling or analytical procedures have been. Precision was evaluated based on the results of QC samples collected in the field and created in the laboratory. The percent differences (or drift) calculated from continuing calibration verification (CCV) standards provided information on precision of the analytical system. The calculated relative percent differences

(RPDs) for replicate field samples or matrix spike/matrix spike duplicate (MS/MSD) pairs provided information on precision of sampling and analytical procedures, and the RPDs for laboratory control sample/laboratory control sample duplicate (LCS/LCSD) pairs provided information on precision of the analytical procedures.

Accuracy is defined as the closeness of agreement between an observed value and an accepted reference value. Accuracy was evaluated based on relative standard deviations (RSDs) generated from initial calibrations and recoveries from second-source initial calibration verifications (ICVs) and recoveries from MS/MSD and LCS/LCSD samples. Field sample results associated with recoveries and RSDs outside the acceptance limits were qualified.

- All GEL and ACZ calibrations were acceptable for the metals analysis. Neither GEL nor SCA provided calibration data for radiochemical analyses, so calibration data were not evaluated. Data validation was not performed on the QA split samples analyzed by SCA because only summary data were not provided.
- All ACZ spike recoveries for metals were acceptable. GEL spike recoveries for metals were acceptable, with two exceptions: one or metals were qualified as estimated in samples 101107SEAR-1-0-C(3), 101207SEMSC-1-0-C(3), and 101207SEMSC-4-0-C(3) because MS/MSD recoveries and/or RPDs were outside the control limits. All other spike sample recoveries and RPDs were acceptable. Spike sample exceedances are summarized in the data validation reports for SDGs 195901 and 195904.
- GEL and ACZ analyzed laboratory duplicates associated with all metals analyses. Metals data were qualified in samples 101207SEMSC-1-0-C(3), 101207SEMSC-4-0-C(3), 101207SEMSC-8-1-C(3), 101207SEMSC-8-2-C(3), and 101207SEMSC-8-3-C(3) because RPDs were greater than the control limit. All laboratory duplicate exceedances are summarized in the data validation reports for SDG 195904 and 195909/196021.
- All recoveries for interference check samples analyzed by ACZ for arsenic, cadmium, copper, nickel, selenium, and vanadium were acceptable. Interference check samples were not analyzed by GEL.
- All recoveries for ICP-MS tuning analyses were acceptable.
- All LCS/LCSD recoveries and RPDs were acceptable for metals.
- All percent differences for serial dilutions were acceptable, with two exceptions. One or more metals results were qualified in samples 101207SEMSC-1-0-C(3) and 101107SEAR-9-4-C-(3) because percent differences were outside the control limit. These exceedances are summarized in the data validation reports for SDGs 195904 and L65816.

- All recoveries and RPDs for radionuclide QC sample analysis were within laboratoryestablished control limits.
- The radionuclide sample identification and quantitation criteria for reporting (that is, the detected activity as compared to the uncertainly and sample-specific minimum detectable activity [MDA] or concentration [MDC]) were acceptable, with the exceptions noted in each data validation report (GEL SDGs 195901, 195904, 196909, and 196021).

Representativeness

Representativeness is evaluated by reviewing blank results and overall data quality. Blanks are analyzed before and during the analytical process. GEL and ACZ analyzed blanks using initial calibration blanks and continuing calibration blanks (ICB/CCB). Both labs had one or more metals detected in their preparation blanks and calibration blanks. Additionally, metals were detected in the field and equipment blanks associated with the analysis of the three QA split samples. Sample results associated with detected blanks that were greater than the method detection limit and less than five times the detected blank were qualified as undetected at five times the highest blank detection for that particular analyte. All other blank results were below detection limit. Metals data that were qualified due to blank detections are summarized in data validation reports for SDGs L65816 and 195909/186921.

Representative for radionuclide analysis was determined from the laboratory blank data. The normalized absolute difference (NAD) was calculated as follows:

NAD =
$$|Sample| - |Blank||$$

([Uncertainty_{Sample}² + Uncertainty_{Blank}²) 1/2

If the NAD were greater than 2.58, then the reported results were acceptable. If the NAD was less than 2.58 but greater than 1.96, then the data were qualified as estimated. If the NAD was less than 1.96 and the reported concentration were less than two times the uncertainty, then the radionuclide was considered not detected (flagged as UJ) at the reported concentration. Polonium-210 results that were qualified because of method blank contamination are summarized in each data validation report.

All samples were analyzed within the recommended holding times for metals and radionuclides analyses.

Completeness

All field samples, field blank samples, and QA Split samples were collected and analyzed as specified in the *Work Plan, Field Sampling Plan, Quality Assurance Program Plan, and Health and Safety Memoranda for the 2nd CERCLA Five-Year Review* (MWH, 2007). GEL's and ACZ's laboratory data were complete for metals and radionuclide analyses. SCA laboratory data were complete with the exception of back-up (raw) data in the laboratory report. Both GEL and ACZ provided raw data packets that contained information on the specific analytes for which sediment samples were analyzed.

Comparability

Comparability is defined as the confidence with which one data set can be evaluated against another. On this project, comparability was assured by analyzing all samples according to the specified methods and procedures described in the *Work Plan, Field Sampling Plan, Quality Assurance Program Plan, and Health and Safety Memoranda for the 2nd CERCLA Five-Year Review* and via the analysis of QA Split samples. Table 1 provides the results of the QA split samples for metals, and Table 2 provides the results for Polonium-210.

Of the 51 RPDs calculated for metals for the three sets of triplicate and QA Split samples, all but nine were with the QAPP-defined acceptance criterion of 35 for duplicates. Other than the fact that the QA laboratory's results were generally greater than the primary laboratory's results, there did not seem to be any apparent pattern to the differences. The triplicate and QA Split sample results for the three sets of sediment samples indicate that the metals data were generally comparable.

All RPDs and duplicate error ratios (see Table 2 for calculation) calculated for Polonium-210 for the three sets of triplicate and QA Split samples were within control, with one exception. The RPD for Polonium-210 calculated from the results of triplicate sample 101107SEAR-9-2-C(3) and QA Split sample 101107SEAR-9-2-C(3) was 48, greater than the QAPP-defined acceptance

criterion of 35 for duplicate samples. Many of the Polonium-210 results reported by GEL were validated as not detected at the reported concentration (see individual data validation reports). As validated, the triplicate and QA Split sample results for the three sets of sediment samples indicate that the Polonium-210 data were generally comparable.

Summary of Data Quality

Analytical data generated from sediment samples collected in support of the 2nd Five-Year CERCLA Review for the Monsanto Soda Springs Plant were reviewed and validated according to the *USEPA National Functional Guidelines for Inorganic Data Review* and *USDOE Evaluation of Radiochemical Data Usability*. None of the data was rejected, and all data are usable as qualified.

References

- MWH, 2002. Final Field Sampling Plan for CERCLA Five-Year Review Soil and Sediment Investigation. Monsanto Elemental Phosphorus Plant, Soda Springs, Idaho. Prepared by MWH for Monsanto.
- MWH, 2007. Work Plan, Field Sampling Plan, Quality Assurance Program Plan, and Health and Safety Memoranda for the 2nd CERCLA Five-Year Review. Monsanto Elemental Phosphorus Plant, Soda Springs, Idaho. August.
- United States Department of Energy (USDOE), 1997a Department of Energy, Environmental Measurements Laboratory, *Health and Safety Laboratory (HASL)-300 Manual*, Section 4.5.4 (Po-01-RC: alpha ray spectrometry), 28th Edition, February.
- USDOE, 1997b. Department of Energy, *Evaluation of Radiochemical Data Usability*, es/er/ms-5, April.
- USEPA, 2004. National Functional Guidelines for Inorganic Data Review, Office of Superfund Remediation and Technology Innovation, Washington DC. OSWER 9240.1-45; EPA 540-R-04-004. October.

ATTACHMENT A

DATA VALIDATION REPORTS

GEL SDG No. 195901 Metals

GEL SDG No. 195901 Polonium-210

GEL SDG No. 195904 Metals

GEL SDG No. 195904 Polonium-210

GEL SDG No. 195909 and 196021 Metals

GEL SDG No. 195909 Polonium-210

GEL SDG No. 196021 Polonium-210

ACZ SDG No. L65816 Metals

TABLE 1

SUMMARY OF TRIPLICATE AND QA SPLIT SAMPLE RESULTS FOR METALS
2ND CERCLA 5-YEAR REVIEW
MONSANTO
(Page 1 of 3)

Sample Identification	Laboratory Identification	Sample Type	Chemical Parameter	Laboratory Result mg/kg	Laboratory Qualifier	Validation Qualifier	Precision ^a RPD (<35)
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Arsenic	150			
101207SEMSC-8-1-C(3)	196021001	Triplicate	Arsenic	106		J	34
101207SEMSC-8-2-C(3)	196021002	Triplicate	Arsenic	99.6		J	40
101207SEMSC-8-3-C(3)	196021003	Triplicate	Arsenic	85.6		J	55
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Cadmium	13.1			
101207SEMSC-8-1-C(3)	196021001	Triplicate	Cadmium	13.0		J	0.77
101207SEMSC-8-2-C(3)	196021002	Triplicate	Cadmium	17.1		J	26
101207SEMSC-8-3-C(3)	196021003	Triplicate	Cadmium	13.7		J	4.5
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Copper	9.5			
101207SEMSC-8-1-C(3)	196021001	Triplicate	Copper	7.50		J	24
101207SEMSC-8-2-C(3)	196021002	Triplicate	Copper	9.59		J	0.94
101207SEMSC-8-3-C(3)	196021003	Triplicate	Copper	8.84		J	7.2
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Nickel	35.7			
101207SEMSC-8-1-C(3)	196021001	Triplicate	Nickel	28.7		J	22
101207SEMSC-8-2-C(3)	196021002	Triplicate	Nickel	33.3		J	7.0
101207SEMSC-8-3-C(3)	196021003	Triplicate	Nickel	24.5		J	37
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Selenium	4.46			'-
101207SEMSC-8-1-C(3)	196021001	Triplicate	Selenium	2.79			46
101207SEMSC-8-2-C(3)	196021002	Triplicate	Selenium	4.09			8.7
101207SEMSC-8-3-C(3)	196021003	Triplicate	Selenium	3.26			31
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Silver	0.17			
101207SEMSC-8-1-C(3)	196021001	Triplicate	Silver	0.239	J		34
101207SEMSC-8-2-C(3)	196021002	Triplicate	Silver	0.432			87
101207SEMSC-8-3-C(3)	196021003	Triplicate	Silver	0.276	J		48
101207SEMSC-8-4-C(3)	L65816-03	QA Split	Vanadium	89.6			
101207SEMSC-8-1-C(3)	196021001	Triplicate	Vanadium	98.6		J	10
101207SEMSC-8-2-C(3)	196021002	Triplicate	Vanadium	105		J	16
101207SEMSC-8-3-C(3)	196021003	Triplicate	Vanadium	92.2		J	2.9
101107SEAR-9-4-C(3)	L65816-01	QA Split	Arsenic	5.1		J	
101107SEAR-9-1-C(3)	196021005	Triplicate	Arsenic	3.26			44
101107SEAR-9-2-C(3)	196021006	Triplicate	Arsenic	3.99			24

TABLE 1

SUMMARY OF TRIPLICATE AND QA SPLIT SAMPLE RESULTS FOR METALS
2ND CERCLA 5-YEAR REVIEW
MONSANTO
(Page 2 of 3)

Sample Identification	Laboratory Identification	Sample Type	Chemical Parameter	Laboratory Result mg/kg	Laboratory Qualifier	Validation Qualifier	Precision ^a RPD (<35)
101107SEAR-9-3-C(3)	196021007	Triplicate	Arsenic	3.44			39
101107SEAR-9-4-C(3)	L65816-01	QA Split	Cadmium	2.6			
101107SEAR-9-1-C(3)	196021005	Triplicate	Cadmium	2.29		U	
101107SEAR-9-2-C(3)	196021006	Triplicate	Cadmium	2.59		U	
101107SEAR-9-3-C(3)	196021007	Triplicate	Cadmium	2.36		U	
101107SEAR-9-4-C(3)	L65816-01	QA Split	Copper	8.2			
101107SEAR-9-1-C(3)	196021005	Triplicate	Copper	6.77			19
101107SEAR-9-2-C(3)	196021006	Triplicate	Copper	6.99			16
101107SEAR-9-3-C(3)	196021007	Triplicate	Copper	6.75			19
101107SEAR-9-4-C(3)	L65816-01	QA Split	Nickel	11.3			
101107SEAR-9-1-C(3)	196021005	Triplicate	Nickel	10.4			8.3
101107SEAR-9-2-C(3)	196021006	Triplicate	Nickel	10.8			4.5
101107SEAR-9-3-C(3)	196021007	Triplicate	Nickel	10.1			11
101107SEAR-9-4-C(3)	L65816-01	QA Split	Selenium	1.24			
101107SEAR-9-1-C(3)	196021005	Triplicate	Selenium	ND	U		
101107SEAR-9-2-C(3)	196021006	Triplicate	Selenium	ND	U		
101107SEAR-9-3-C(3)	196021007	Triplicate	Selenium	ND	U		
101107SEAR-9-4-C(3)	L65816-01	QA Split	Silver	0.09	В		
101107SEAR-9-1-C(3)	196021005	Triplicate	Silver	0.110	J		20
101107SEAR-9-2-C(3)	196021006	Triplicate	Silver	0.103	J		13
101107SEAR-9-3-C(3)	196021007	Triplicate	Silver	0.0916	J		1.8
101107SEAR-9-4-C(3)	L65816-01	QA Split	Vanadium	14.6			
101107SEAR-9-1-C(3)	196021005	Triplicate	Vanadium	13.1			11
101107SEAR-9-2-C(3)	196021006	Triplicate	Vanadium	14.7			0.68
101107SEAR-9-3-C(3)	196021007	Triplicate	Vanadium	13.5			7.8
101107SEAR-10-4-C(3)	L65816-02	QA Split	Arsenic	4.7			
101107SEAR-10-1-C(3)	196021009	Triplicate	Arsenic	3.53			28
101107SEAR-10-2-C(3)	196021010	Triplicate	Arsenic	3.36			33
101107SEAR-10-3-C(3)	196021011	Triplicate	Arsenic	3.01			44
101107SEAR-10-4-C(3)	L65816-02	QA Split	Cadmium	0.91			
101107SEAR-10-1-C(3)	196021009	Triplicate	Cadmium	0.791		U	
101107SEAR-10-2-C(3)	196021010	Triplicate	Cadmium	0.839		Ū	

TABLE 1

SUMMARY OF TRIPLICATE AND QA SPLIT SAMPLE RESULTS FOR METALS
2ND CERCLA 5-YEAR REVIEW
MONSANTO
(Page 3 of 3)

Sample Identification	Laboratory Identification	Sample Type	Chemical Parameter	Laboratory Result mg/kg	Laboratory Qualifier	Validation Qualifier	Precision ^a RPD (<35)
101107SEAR-10-3-C(3)	196021011	Triplicate	Cadmium	0.672		U	
101107SEAR-10-4-C(3)	L65816-02	QA Split	Copper	9.6			
101107SEAR-10-1-C(3)	196021009	Triplicate	Copper	9.66			0.62
101107SEAR-10-2-C(3)	196021010	Triplicate	Copper	9.37			2.4
101107SEAR-10-3-C(3)	196021011	Triplicate	Copper	7.29			27
101107SEAR-10-4-C(3)	L65816-02	QA Split	Nickel	10.5			
101107SEAR-10-1-C(3)	196021009	Triplicate	Nickel	11.2			6.5
101107SEAR-10-2-C(3)	196021010	Triplicate	Nickel	10.6			0.95
101107SEAR-10-3-C(3)	196021011	Triplicate	Nickel	9.59			9.1
101107SEAR-10-4-C(3)	L65816-02	QA Split	Selenium	0.83			
101107SEAR-10-1-C(3)	196021009	Triplicate	Selenium	ND	U		
101107SEAR-10-2-C(3)	196021010	Triplicate	Selenium	ND	U		
101107SEAR-10-3-C(3)	196021011	Triplicate	Selenium	ND	U		
101107SEAR-10-4-C(3)	L65816-02	QA Split	Silver	0.1			
101107SEAR-10-1-C(3)	196021009	Triplicate	Silver	0.120	J		18
101107SEAR-10-2-C(3)	196021010	Triplicate	Silver	0.131	J		27
101107SEAR-10-3-C(3)	196021011	Triplicate	Silver	0.086	J		15
101107SEAR-10-4-C(3)	L65816-02	QA Split	Vanadium	16.7			
101107SEAR-10-1-C(3)	196021009	Triplicate	Vanadium	16.8			0.60
101107SEAR-10-2-C(3)	196021010	Triplicate	Vanadium	16.4			1.8
101107SEAR-10-3-C(3)	196021011	Triplicate	Vanadium	13.5			21

J - result is estimated because of one or more quality control results that are outside the acceptance limits

 $RPD = \frac{|(Triplicate - QA Split)|}{(Triplicate + QA Split)/2}$

U - the analyte is not considered present above the RL

^a The relative percent difference (RPD) was calculated for each triplicate sample result against the associated QA Split sample result when both results were reported as detections (that is, not non-detected). An RPD value that is bolded and boxed is above the acceptance criterion. The RPD acceptance criteria is 35.

TABLE 2

SUMMARY OF TRIPLICATE AND QA SPLIT SAMPLE RESULTS FOR RADIOLOGICAL PARAMETER
2ND CERCLA 5-YEAR REVIEW
MONSANTO

	Laboratory	Sample	Chemical	L	aboratory Re	esult (pCi/g	g)	Valid	dation Result ^a	Pre	cision ^b
Sample Identification	Identification	Type	Parameter	Result	Uncertainty	Qualifier	MDC	Qual	ReasonCode	RPD (<35)	DER (≤ 1.42)
101207SEMSC-8-1-C(3)	196021001	TRIPLICATE	Polonium-210	0.915	0.473		0.564	UJ	Q09,B01,C03	NA	0.23
101207SEMSC-8-2-C(3)	196021002	TRIPLICATE	Polonium-210	0.743	0.479		0.644	UJ	Q09,B01,C03	NA	0.32
101207SEMSC-8-3-C(3)	196021003	TRIPLICATE	Polonium-210	0.616	0.438	U	0.630		C03	NA	0.40
101207SEMSC-8-4-C(3)	MWW07-8021-01	QA Split	Polonium-210	1.33	0.776		0.48	n	ot validated -		
101107SEAR-9-1-C(3)	196021005	TRIPLICATE	Polonium-210	0.715	0.481		0.652	UJ	Q09,B01,C03	NA	0.46
101107SEAR-9-2-C(3)	196021006	TRIPLICATE	Polonium-210	0.916	0.448		0.427	J	Q09,C03	48	0.35
101107SEAR-9-3-C(3)	196021007	TRIPLICATE	Polonium-210	1.82	0.663		0.499	J	Q09,C03	19	0.16
101107SEAR-9-4-C(3)	MWW07-8021-02	QA Split	Polonium-210	1.5	0.711		0.289	n	ot validated -		
101107SEAR-10-1-C(3)	196021009	TRIPLICATE	Polonium-210	0.862	0.475		0.502	UJ	Q09,B01,C03	NA	0.42
101107SEAR-10-2-C(3)	196021010	TRIPLICATE	Polonium-210	0.663	0.425		0.504	UJ	Q09,B01,C03	NA	0.55
101107SEAR-10-3-C(3)	196021011	TRIPLICATE	Polonium-210	1.26	0.489		0.356	J	Q09,C03	26	0.20
101107SEAR-10-4-C(3)	MWW07-8021-03	QA Split	Polonium-210	1.63	0.773		0.314	n	ot validated -		

^a The triplicate sample data were validated, but not the quality assurance (QA) split samples. The QA Split laboratory report did not contain sufficient back-up data to perform validation. Reason codes are defined in the individual validation reports.

J - result is estimated because of one or more quality control results that are outside the acceptance limits

MDC - minimum detectable concentration

pCi/g - pico-Curries per gram

UJ - result is considered not detected at the laboratory-reported concentration. The non-detected value is considered estimated.

RPD =
$$\frac{|(Triplicate - QA Split)|}{(Triplicate + QA Split)/2}$$
DER =
$$\frac{|(Triplicate - QA Split)|}{2 * (Uncert_{Triplicate}^2 + Uncert_{QA Split}^2)^{1/2}}$$

^b The relative percent difference (RPD) and duplicate error ratio (DER) were calculated for each triplicate sample result against the associated QA Split sample result when both results were reported as detections (that is, not non-detected). An RPD or DER value that is bolded and boxed is above the acceptance criterion. The RDP and DER acceptance criteria are 35 and 1.42, respectively.

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011601

Laboratory: GEL Laboratories, LLC (Charleston, SC)

Data packages: Sample Delivery Group (SDG) Number 195901

Methods: Total arsenic, cadmium, copper, nickel, selenium, silver,

and vanadium by EPA Method 6020

Guidance: USEPA Contract Laboratory Program National Functional

Guidelines for Inorganic Data Review, October 2004, ICP-

AES and ICP-MS

Modification: Data validator evaluated blank contamination as defined in

the Inorganic Data Assessment Summary of the P4 Production Southeast Idaho Mine-Specific Selenium

Program "Comprehensive Site Investigation, Sampling and

Analysis Plan" (MWH, 2004)

Sample Cross Reference:

Field Sample Identification	Date Collected	Laboratory Sample Identification
101107SEAR-1-0-C(3)	10/11/07	195901001
101107SEAR-2-0-C(3)	10/11/07	195901002
101107SEAR-3-0-C(3)	10/11/07	195901003
101107SEAR-4-0-C(3)	10/11/07	195901004
101107SEAR-5-0-C(3)	10/11/07	195901005
101107SEAR-6-0-C(3)	10/11/07	195901006
101107SEAR-7-0-C(3)	10/11/07	195901007
101107SEAR-8-0-C(3)	10/11/07	195901008
101107SEAR-11-0-C(3)	10/11/07	195901011
101107SEAR-12-0-C(3)	10/11/07	195901012
101107SEAR-13-0-C(3))	10/11/07	195901013
101107SEAR-14-0-C(3)	10/11/07	195901014
101107SEAR-15-0-C(3)	10/11/07	195901015
101107SEAR-16-0-C(3)	10/11/07	195901016
101107SEAR-17-0-C(3)	10/11/07	195901017
101107SEAR-18-0-C(3)	10/11/07	195901019

I.	Holding	Times
----	---------	--------------

X	ICP/GFAA metals completed in <6 months from collection
	Mercury analyzed in <28 days from collection
	Chloride, fluoride, sulfate completed in <28 days from collection
	TSS and TDS completed within 7 days from collection
	O-phosphorus completed within 48 hours from collection
	Nitrate-nitrite as N completed within 48 hours
	Alkalinity completed within 14 days from collection
	pH completed within 24 hours from collection
	Sample analyzed outside recommended hold time, estimated (J/UJ)
	Sample analyzed $> 2x$ recommended hold time, unusable (R/UR)

A total of 16 sediment samples were submitted to GEL Laboratories, LLC (Charleston, SC) for metals analysis. The samples were collected October 11, 2007 and we received at the laboratory on October 17, 2007. The cooler temperatures ranged from 13 °C to 19 °C when they arrived at the lab, which is outside of the recommended temperature criteria of 4 ± 2 °C. Metals are not impacted by the elevated temperature, so no data were qualified. All samples were extracted and analyzed within the EPA recommended hold times.

II. Initial Calibration

Initial Calibration X IC correlation coefficient ≥ 0.995 IC correlation coefficient < 0.995, results > MDL estimated (J); < MDL unusable (R)
Initial Calibration Verification X ICV %R 90 - 110, results acceptable ICV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ) ICV %R < 75, results > MDL estimated (J); < MDL unusable (R) ICV %R 111-160 results > MDL estimated (J) ICV %R > 160, results > MDL unusable (R)
ICP-MS Tune Analysis (check all that apply): X Tune %RSD for all analytes <5%, mass calibration within 0.1 amu Tune not performed, all results unusable (R/UR) Tune not performed properly, results estimated (J/UJ) Mass calibration not within 0.1 amu, results estimated (J/UJ) %RSD>5%, results estimated (J/UJ)
All initial calibration data were within method-established control limits.

III. Calibration Verification

X	CCV %R 90 - 110, results acceptable
	CCV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ)
	CCV %R < 75, results > MDL estimated (J); < MDL unusable (UR)
	CCV %R 111-160 results > MDL estimated (J)
	CCV %R > 160, results > MDL unusable (R)

All continuing verification data were within method-established control limits.

IV. B	Blanks
Targ	get analyte detected in ICB/CCB get analyte detected in preparation blank get analyte detected in field blank get analyte detects $\leq 5x$ blank result qualified as not detected at sample concentration (U).
No target	t analytes were detected in any of the blanks.
V. I	nterference Checks
Al,ICSICSICS	A/B Recoveries Acceptable Ca, Fe, Mg sample concentrations >ICS concentrations %R> 120%, results > MDL estimated (J) %R 50-79%, results >MDL estimated (J), possible false negative %R 50-79%, results < MDL estimated (UJ) %R <50%, results > MDL and <mdl %r="" (r="" rejected="" ur)="">120, results < MDL acceptable</mdl>
No interf	Ference check sample was reported for this SDG.
VI. L	aboratory Control Samples
LCS	S %R 80-120 (Ag, Sb no limits) S %R 50-79% or >120%, results estimated (UJ/J) S %R > 150% and all results rejected (R) S %R < 50%, results < MDL rejected (R), detections estimated (J)
All recov	veries and relative percent differences for LCS/LCSD pairs were within control
VII. D	Ouplicate Sample Analysis
Dup	blicate RPD \leq 20% for waters (\leq 35% for soils) for results $>$ 5X PQL blicate range is within \pm PQL (\pm 2xPQL for soils) for results \leq 5X PQL alify positive results estimated (J) if the above criteria were not met.
All labor	atory replicate RPDs were within control limits.
VIII. M	Matrix Spikes/Matrix Spike Duplicates and Analytical/Post Digestion Spikes
X	ke %R within 75-125% ke %R 30-74%, >125%, results > MDL estimated (J) ke %R 30-74% results < MDL estimated (UJ) ke %R <30%, results < MDL rejected (R) d blank used for spike analysis ke %R >125%, results < MDL acceptable uple concentration exceeds spike concentration by a factor of > 4x, acceptable

All recoveries and relative percent differences for MS/MSD pairs were within control limits with one exception. The MSD percent recovery associated with the arsenic analysis of project sample 101107SEAR-1-0-C(3) was greater than the upper control limit. Arsenic in the parent sample was qualified as estimated (J).

TT7	a • 1	D.1	4 •
IX.	Serial	l I)1	utions

X	Sample concentration > 50x MDL and %D < 10, result acceptable
	Sample concentration $> 50x$ MDL and %D > 10 , results $>$ MDL estimated (J)
	Sample concentration > 50x MDL and %D > 10, results < MDL estimated (UJ)

All serial dilution percent differences were within control limits.

X. Field Duplicates

Field duplicate RPD $\leq 20\%$ waters ($\leq 35\%$ for soils)
Field duplicate range is within <u>+</u> CRDL (<u>+</u> 2x CRDL for soils) for results <5xCRDL

Note: There are no qualification requirements for field QC samples exceeding limits.

No field duplicates were collected for this SDG.

XI. Overall Assessment of Data

With the exceptions of the out-of-control result specified herein, all quality control data associated with the field samples were within control limits. With the exception of the qualified data summarized below, none of the out-of-control data resulted in the qualification of field data. All field results are usable as reported by the laboratory.

Summary of Qualified Data:

Field Sample Identification	Laboratory Sample Identification	Parameter	Result / Lab Flag (mg/kg)	Data Validation Result / Flag (mg/kg)	Reason Code ^a
101107SEAR-1-0-C(3)	1905901001	Arsenic	3.30	3.30 J	08

^a See definitions on last page of this report

Definitions:

QC Sample Type Cross-Reference:

ACZ Acronym	EPA Method Acronym	Definition
AS/ ASD		Analytical Spike / Analytical Spike Duplicate (Post Digestion)
CCB	Calibration Blank	Continuing Calibration Blank
CCV	CAL	Continuing Calibration Verification Standard
DUP	LD1 and LD2	Laboratory Sample Duplicate
ICB	Calibration Blank	Initial Calibration Blank
ICV	IPC Solution	Initial Calibration Verification
ICSAB	SIC Solution	Inter-element Correction Standard
LCSS/		Laboratory Control Sample / Laboratory Control Sample
LCSSD		Duplicate (Soil)
LCSW/		Laboratory Control Sample / Laboratory Control Sample
LCSWD		Duplicate (Water)
LFB	LFB (LCS)	Laboratory Fortified Blank
LFM/	LFM/	Laboratory Fortified Matrix / Laboratory Fortified Matrix
LFMD	LFMD	Duplicate
LRB	LRB	Laboratory Reagent Blank
MS/MSD		Matrix Spike / Matrix Spike Duplicate
PBS/PBW		Prep Blank – Soil / Prep Blank -Water
PQV	CRQL	Practical Quantitation Verification Standard
SDL		Serial Dilution

Qualifiers:

Reason Code	Definition
01	Hold time or sample receipt non-conformance
02	Initial calibration non-conformance
03	Continuing calibration outside control limit
04	Blank contamination
05	Interference check sample recovery outside control limit
06	Laboratory control sample / duplicate recovery or RPD outside control limit
07	Laboratory duplicate is outside control limit
08	Matrix spike / duplicate recovery or RPD outside control limit
09	Serial dilution percent difference outside control limit

MWH Client: Monsanto Company

CERCLA 2nd 5-Year Review **MWH Project Name:**

MWH Project Number: 1010076.011701

GEL Laboratories, LLC (Charleston, SC) Laboratory:

Data packages: Sample Delivery Group (SDG) Number 195901

Analytical Batches: 694902

Polonium (Po) 210 (210 Po) by EML HASL 300, Po-01-RC Method:

and per the laboratory's SOP GL-RAD-A-016 REV#9 (an

alpha spectrometry method)

Guidance Documents: U.S. Department of Energy, Evaluation of Radiochemical

Data Usability, es/er/ms-5, April 1997.

U.S. Department of Energy, Environmental Measurements Laboratory, Health and Safety Laboratory (HASL)-300

Manual, Section 4.5.4 (Po-01-RC: alpha ray spectrometry),

28th Edition, February 1997.

Modification: Data Flags and Reason Codes as specified in Appendix A

> of Evaluation of Radiochemical Data Usability (see Attachment A below) were used to qualify the data, with modification for the evaluation of laboratory duplicate (duplicate sample error ratio used instead of normalized

absolute difference).

Clarifications: GEL did not provide calibration data. Results were not

qualified, but sample results in the project database were

populated with the applicable Reason Code (C03).

Attachment A: Validation Flags and Reason Codes

Attachment B: Validation Worksheet

Sample Cross Reference:

			Laboratory Sample
No.	Field Sample Identification	Date Collected	Identification
1	101107SEAR-1-0-C(3)	10/11/2007	195901001
2	101107SEAR-2-0-C(3)	10/11/2007	195901002
3	101107SEAR-3-0-C(3)	10/11/2007	195901003
4	101107SEAR-4-0-C(3)	10/11/2007	195901004
5	101107SEAR-5-0-C(3)	10/11/2007	195901005
6	101107SEAR-6-0-C(3)	10/11/2007	195901006
7	101107SEAR-7-0-C(3)	10/11/2007	195901007
8	101107SEAR-8-0-C(3)	10/11/2007	195901008
9	101107SEAR-11-0-C(3)	10/11/2007	195901011
10	101107SEAR-12-0-C(3)	10/11/2007	195901012
11	101107SEAR-13-0-C(3)	10/11/2007	195901013
12	101107SEAR-14-0-C(3)	10/11/2007	195901014
13	101107SEAR-15-0-C(3)	10/11/2007	195901015
14	101107SEAR-16-0-C(3)	10/11/2007	195901016
15	101107SEAR-17-0-C(3)	10/11/2007	195901017
16	101107SEAR-18-0-C(3)	10/11/2007	195901018

I. Chain-of-Custody Procedure, Sample Preservation, and Holding Time

_X__ Signatures on chain(s) and all samples accounted for

X 210 Po: collected in HDPE (polyethylene) containers

Geometries used in analysis

A total of 16 sediment samples were collected on October 11, 2007 in HDPE containers. All samples collected during this week were shipped in 11 coolers, and arrived at the laboratory on October 17, 2007. Sample chain-of-custody and laboratory receipt documentation appears intact. The 16 samples were prepared on October 25, 2007, and analyzed on November 1, 2007, 21 days into the 138-day half-life of ²¹⁰Po.

Instrument Calibration Confirm summary report includes: dates of calibration, geometry, count times for all analysis, number of counts for each standard, measured activity for all samples Confirm matrix used in geometry standard Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate Calibration points including efficiency, energy, and peak resolution Initial calibration Verification Tolerance chart or statistical control chart of the appropriate 20 efficiencies and 20 relevant peak energies with 3 F+/- limits Resolution demonstration of relevant peak(s) Listing of X/Y coordinates in constructing the control charts Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate

Calibration verification data were not assessed because none was provided in the data package.

IV.	Target Compound Identification and Quantitation	
_X	Confirm all samples less than MDC are qualified not detected (U)	

_X__ Confirm all samples less than MDC are qualified not detected (U) _X__ Less than two times the uncertainty were reported by the laboratory as not detected (U)

All sample results that were either less than two times the uncertainty were reported by the laboratory as not detected (U), or were greater than two times the uncertainty and greater than the minimum detectable concentration (MDC), with the following exceptions:

Field Sample	Laboratory Sample		Result Minus	Result (pCi/g)/Lab	Data Validation	Reason
Identification	Identification	Parameter	2*Uncert	Flag	Flag	Code
101107SEAR-5-0-C(3)	195901005	²¹⁰ Po	-0.219	0.699	UJ	Q09
101107SEAR-12-0-C(3)	195901012	²¹⁰ Po	-0.173	0.833	UJ	Q09
101107SEAR-17-0-C(3)	195901017	²¹⁰ Po	-0.065	0.493	UJ	Q09

The results were flagged as not detected (UJ) at the reported concentrations because they failed both the above "two times uncertainty" criterion and the blank criterion specified in Section V below.

V.	Blanks
_X	Method blank results < MDC
_X	Calculate normalized absolute difference (NAD) =
	$ (Sample - Blank) /([Uncertainty^2_{Sample} + Uncertainty^2_{Blank}]^{1/2})$
_X	If normalized absolute difference is > 2.58, no action necessary
_X	If normalized absolute difference is between 1.96 and 2.58, qualify sample J
	If normalized absolute difference is less than 1.96, consider rejecting data

All normalized absolute differences (per above calculation) were greater than 2.58 for all sample results that were reportable (that is, reported as a detection above the MDC), with the following exceptions:

Field Sample	Laboratory Sample			Result (pCi/g)/Lab	Data Validation	Reason
Identification	Identification	Parameter	NAD	(pCl/g)/Lab Flag	Flag	Code
101107SEAR-4-0-C(3)	195901004	²¹⁰ Po	2.41	1.22	J	B01
101107SEAR-5-0-C(3)	195901005	²¹⁰ Po	1.55	0.699	UJ	B01
101107SEAR-7-0-C(3)	195901007	²¹⁰ Po	2.39	1.10	J	B01
101107SEAR-8-0-C(3)	195901008	²¹⁰ Po	2.13	1.07	J	B01
101107SEAR-11-0-C(3)	195901011	²¹⁰ Po	2.28	1.21	J	B01
101107SEAR-12-0-C(3)	195901012	²¹⁰ Po	1.69	0.833	UJ	B01
101107SEAR-13-0-C(3)	195901013	²¹⁰ Po	2.16	0.815	J	B01
101107SEAR-14-0-C(3)	195901014	²¹⁰ Po	2.01	0.829	J	B01
101107SEAR-15-0-C(3)	195901015	²¹⁰ Po	2.49	1.07	J	B01
101107SEAR-16-0-C(3)	195901016	²¹⁰ Po	2.20	0.974	J	B01
101107SEAR-17-0-C(3)	195901017	²¹⁰ Po	1.72	0.493	UJ	B01

E: 11 C1	Laboratory			Result	Data	D
Field Sample	Sample			(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	NAD	Flag	Flag	Code
101107SEAR-18-0-C(3)	195901018	²¹⁰ Po	2.50	1.06	J	B01

VI. Radiochemical Tracers

_X__ Must be analyzed for each sample and laboratory QC sample X Compare %R with laboratory control limits (25-125%)

All recoveries for Polonium (Po) 209 (²⁰⁹Po) for each field sample and laboratory control samples were within control limits.

VII. Laboratory Duplicates

X	Must be analyzed for each batch or for every 20 samples
X	RPDs within the laboratory's control limits (RPD not calculated when one or both duplicate
	results are not detected)
_X	Calculate the duplicate error ratio (DER)) =
	$ (Sample - Duplicate) / (2* ([Uncertainty^2_{Sample} + Uncertainty^2_{Duplicate}]^{1/2}) $
	$DER \le 1.42$
	If DER > 1.42, qualify sample J

The laboratory's laboratory duplicate criteria are: If duplicate activities are less than 5 times MDC, then the RPD should be less than 100%; if activities are greater than 5 times the MDC, the RPD should be less than 20%.

The RPD and DER associated with the laboratory duplicate pair was within these criteria.

VIII. Matrix Spikes

_X	Must be analyzed for each batch or for every 20 samples
_X	Compare %R with laboratory control limits (75-125%)

Matrix spike recovery was within the control limits.

IX. Laboratory Control Samples

X	Must be analyzed for each batch or for every 20 samples
X	Compare %R with laboratory control limits (75-125%)

Laboratory control sample recovery was within control limits.

X. Equipment and Water Blank Samples

A total of 3 equipment blanks and 3 water blanks were collected on October 11 and 12, 2007 for ²¹⁰Po analysis. All water blanks were not detected for both ²¹⁰Po, and 1 of the 3 equipment blanks was detected for ²¹⁰Po. Equipment blank sample 101108SEAR-10-EQ-0 contained 0.366 pci/L of ²¹⁰Po, which equates to 0.0732 pCi based on the 0.2L initial volume. Detections of ²¹⁰Po in this SDG ranged from 0.137 to 0.518 pCi. Since the amount of ²¹⁰Po in the equipment blank was less than that of the field samples, the field sample results were not qualified because of the equipment blank contamination.

XI. Overall Assessment of Data

With the following exceptions, all quality control data associated with the field samples were within control limits. All other field results are usable as reported by the laboratory.

Summary of Qualified Data:

	Laboratory		Result	Data	
Field Sample	Sample		(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	Flag	Result/Flag	Code
All sample results				No flag	C03
101107SEAR-4-0-C(3)	195901004	²¹⁰ Po	1.22	J	B01
101107SEAR-5-0-C(3)	195901005	²¹⁰ Po	0.699	UJ	B01,Q09
101107SEAR-7-0-C(3)	195901007	²¹⁰ Po	1.10	J	B01
101107SEAR-8-0-C(3)	195901008	²¹⁰ Po	1.07	J	B01
101107SEAR-11-0-C(3)	195901011	²¹⁰ Po	1.21	J	B01
101107SEAR-12-0-C(3)	195901012	²¹⁰ Po	0.833	UJ	B01,Q09
101107SEAR-13-0-C(3)	195901013	²¹⁰ Po	0.815	J	B01
101107SEAR-14-0-C(3)	195901014	²¹⁰ Po	0.829	J	B01
101107SEAR-15-0-C(3)	195901015	²¹⁰ Po	1.07	J	B01
101107SEAR-16-0-C(3)	195901016	²¹⁰ Po	0.974	J	B01
101107SEAR-17-0-C(3)	195901017	²¹⁰ Po	0.493	UJ	B01,Q09
101107SEAR-18-0-C(3)	195901018	²¹⁰ Po	1.06	J	B01

ATTACHMENT A

Radiochemical Data Verification and Validation: Per Appendix A in *Evaluation of Radiochemical Data Usability, es/er/ms-5* USDOE April, 1995

Flag	Definition
U	Nuclide considered not detected above the reported MDC or 2 times the uncertainty
J	Nuclide identified; the associated value is approximated
UJ	Nuclide not detected above the reported MDC or 2 times the uncertainty and a quality
	deficiency affects the data and impacts the uncertainty of the reported data
R	Result is not usable for its intended purpose

Reason								
Code	Definition							
Method Bl	ank							
B01	Concentration of contaminant in the method blank at a level ≥ the qualification level							
B02	Method blank was not the same matrix as the analytical samples							
B03	Gross contamination exists							
B04	Blanks were not analyzed at the appropriate frequency							
B05	Sample not significantly different than radiochemical method blank							
B06	Blank data not reports							
B07	Other (describe in comments)							
Calibration	1							
C01	Initial calibration sequence was not followed as appropriate							
C02	Calibration was not performed at the appropriate frequency							
C03	Calibration data not reported							
C04	Calibration not performed							
C05	Chemical resolution criteria were not satisfied							
C06	Standard curve was established with fewer than the required number of standards							
C07	Instrumental system determined to be out of control							
C08	Other (describe in comments)							
Laboratory	Duplicate							
D01	Significant difference between sample and duplicate							
D02	Laboratory duplicate was not analyzed at the appropriate frequency							
D03	Laboratory duplicate data was not reported							
D04	Other (describe in comments)							
	y Concerns							
E01	Custody of sample in question							
E02	Standard not traceable							
E03	Other (describe in comments)							
General								
G01	Professional judgment was used to qualify the data							
G02	Other (describe in comments)							
Holding T								
H01	Holding times were exceeded							
H02	Holding times were grossly exceeded							
H03	Samples were not preserved properly							
H04	Other (describe in comments)							
	Control Sample							
L01	LCS recovery above upper control limit							
L02	LCS recovery below lower control limit							
L03	LCS was not analyzed at appropriate frequency							
L04	LCS not the same matrix as the analytical samples							

Reason							
Code	Definition						
L05	LCS data not reported						
L06	Other (describe in comments)						
Matrix Spi	ke and MS/MSD						
M01	MS recovery above upper control limit						
M02	MS recovery below lower control limit						
M03	MS not analyzed at the appropriate frequency						
M04	MS data not reported						
M05	Other (describe in comments)						
	t Performance						
P01	High background levels or a shift in the energy calibration were observed						
P02	Extraneous peaks were observed						
P03	Loss of resolution was observed						
P04	Peak-tailing or peak splitting that may result in inaccurate quantitation were observed						
P05	Instrument performance not analyzed at the appropriate frequency						
P06	Other (describe in comments)						
Quantitati							
Q01	Peak misidentified						
Q02	Target analyte affected by interfering peak						
Q03	Qualitative criteria were not satisfied						
Q04	Cross contamination occurred						
Q05	No raw data were provided to confirm Quantitation						
Q06	MDC > RDL						
Q07	Inappropriate aliquot sizes were used						
Q08	Sample result < MDC						
Q09	Sample result < 2s uncertainty						
Q10	Negative result						
Q11	Compounds were not adequately resolved						
Q12	Sample weight different from calibration geometry						
Q13	Sample weight greater than greatest weight on mass attenuation curve						
Q14	Other (describe in comments)						
Radiochen							
Y01	Radiochemical tracer yield was above the upper control limit						
Y02	Radiochemical tracer yield was below the lower control limit						
Y03	Radiochemical tracer yield was zero						
Y04	Radiochemical yield data was not present						
Y05	Other (describe in comments)						

ATTACHMENT B: DATA VALIDATION_WORKSHEET GEL SDG 195901 CERCI A 2ND 5-YEAR REVIEW SEDIMENT 2007

CERCLA 2ND 5-YEAR REVIEW_SEDIMENT 2007 MONSANTO (Page 1 of 1)

										Data Valid	ation		
Sample_No	Lab_ld	Assoc_Blnk	Sample_Type	Parameter	Lab_Result	Uncertainty	Lab_Qual MDC	Result-MDC	Result-2*Unc	Dval_MB	Dval_DER	Qual	ReasonCode
101107SEAR-1-0-C(3)	195901001	1201443973	SAMPLE	Polonium-210	2.42	0.703	0.503	1.917	1.014	3.44	0.49		C03
101107SEAR-2-0-C(3)	195901002	1201443973	SAMPLE	Polonium-210	1.47	0.562	0.450	1.020	0.346	2.62			C03
101107SEAR-3-0-C(3)	195901003	1201443973	SAMPLE	Polonium-210	1.84	0.632	0.518	1.322	0.576	2.91			C03
101107SEAR-4-0-C(3)	195901004	1201443973	SAMPLE	Polonium-210	1.22	0.506	0.413	0.807	0.208	2.41		J	B01,C03
101107SEAR-5-0-C(3)	195901005	1201443973	SAMPLE	Polonium-210	0.699	0.459	0.624	0.075	-0.219	1.55		UJ	Q09,B01,C03
101107SEAR-6-0-C(3)	195901006	1201443973	SAMPLE	Polonium-210	0.144	0.304	U 0.576	-0.432	-0.464	0.57			C03
101107SEAR-7-0-C(3)	195901007	1201443973	SAMPLE	Polonium-210	1.10	0.459	0.403	0.697	0.182	2.39		J	B01,C03
101107SEAR-8-0-C(3)	195901008	1201443973	SAMPLE	Polonium-210	1.07	0.506	0.488	0.582	0.058	2.13		J	B01,C03
101107SEAR-11-0-C(3)	195901011	1201443973	SAMPLE	Polonium-210	1.21	0.534	0.526	0.684	0.142	2.28		J	B01,C03
101107SEAR-12-0-C(3)	195901012	1201443973	SAMPLE	Polonium-210	0.833	0.503	0.625	0.208	-0.173	1.69		UJ	Q09,B01,C03
101107SEAR-13-0-C(3)	195901013	1201443973	SAMPLE	Polonium-210	0.815	0.372	0.311	0.504	0.071	2.16		J	B01,C03
101107SEAR-14-0-C(3)	195901014	1201443973	SAMPLE	Polonium-210	0.829	0.413	0.390	0.439	0.003	2.01		J	B01,C03
101107SEAR-15-0-C(3)	195901015	1201443973	SAMPLE	Polonium-210	1.07	0.425	0.291	0.779	0.220	2.49		J	B01,C03
101107SEAR-16-0-C(3)	195901016	1201443973	SAMPLE	Polonium-210	0.974	0.443	0.421	0.553	0.088	2.20		J	B01,C03
101107SEAR-17-0-C(3)	195901017	1201443973	SAMPLE	Polonium-210	0.493	0.279	0.269	0.224	-0.065	1.72		UJ	Q09,B01,C03
101107SEAR-18-0-C(3)	195901018	1201443973	SAMPLE	Polonium-210	1.06	0.419	0.360	0.700	0.222	2.50		J	B01
MB	1201443973	1201443973	MB	Polonium-210	-0.0499	0.146	U 0.363						
101107SEAR-1-0-C(3)	1201443974	1201443973	DUP	Polonium-210	1.50	0.625	0.666						

Dupl RPD= 47

							Sample		
Sample_No	Coll_date	Rec_date	Ext_date	Anal_date	Equipment Rinsate detection	Conc.,pCi/g	Initial Wt, g Ar	nt, pCi	Sort
101107SEAR-1-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07	101107SEAR-10-EQ-0 (10/11/2007)	2.42	0.214	0.518	0.137
101107SEAR-2-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07	Polonium-210	1.47	0.288	0.423	0.145
101107SEAR-3-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07		1.84	0.209	0.385	0.176
101107SEAR-4-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07	Result 0.366 pCi/L	1.22	0.212	0.259	0.178
101107SEAR-5-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07	Initial Vol 0.2 L	0.699	0.208	0.145	0.188
101107SEAR-6-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07	Amount 0.0732 pCi	0.144U	0.232	ND	0.211
101107SEAR-7-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07		1.10	0.226	0.249	0.222
101107SEAR-8-0-C(3)	10/11/07	10/17/07	10/25/07	11/01/07		1.07	0.197	0.211	0.236
101107SEAR-11-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07		1.21	0.209	0.253	0.249
101107SEAR-12-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07		0.833	0.211	0.176	0.253
101107SEAR-13-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07	Sample Range (pCi):	0.815	0.219	0.178	0.259
101107SEAR-14-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07	0.137-0.518	0.829	0.227	0.188	0.278
101107SEAR-15-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07		1.07	0.221	0.236	0.385
101107SEAR-16-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07		0.974	0.228	0.222	0.423
101107SEAR-17-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07		0.493	0.277	0.137	0.518
101107SEAR-18-0-C(3)) 10/11/07	10/17/07	10/25/07	11/01/07		1.06	0.262	0.278	ND
MB	11/01/07	11/01/07	11/01/07	11/01/07					
101107SEAR-1-0-C(3)	11/01/07	11/01/07	11/01/07	11/01/07					

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011601

Laboratory: GEL Laboratories, LLC (Charleston, SC)

Data packages: Sample Delivery Group (SDG) Number 195904

Methods: Total arsenic, cadmium, copper, nickel, selenium, silver,

and vanadium by EPA Method 6020

Guidance: USEPA Contract Laboratory Program National Functional

Guidelines for Inorganic Data Review, October 2004, ICP-

AES and ICP-MS

Modification: Data validator evaluated blank contamination as defined in

the Inorganic Data Assessment Summary of the P4 Production Southeast Idaho Mine-Specific Selenium

Program "Comprehensive Site Investigation, Sampling and

Analysis Plan" (MWH, 2004)

Sample Cross Reference:

Field Sample		Laboratory Sample
Identification	Date Collected	Identification
101207SEMSC-1-0-C(3)	10/12/07	195904001
101207SEMSC-2-0-C(3)	10/12/07	195904002
101207SEMSC-3-0-C(3)	10/12/07	195904003
101207SEMSC-4-0-C(3)	10/12/07	195904004
101207SEMSC-5-0-C(3)	10/12/07	195904005
101207SEMSC-6-0-C(3)	10/12/07	195904006
101207SEMSC-7-0-C(3)	10/12/07	195904007
101207SEMSC-9-0-C(3)	10/12/07	195904009
101207SEMSC-10-0-C(3)	10/12/07	195904010

I. Holding Times

X	ICP/GFAA metals completed in <6 months from collection
	Mercury analyzed in <28 days from collection
	Chloride, fluoride, sulfate completed in <28 days from collection
	TSS and TDS completed within 7 days from collection
	O-phosphorus completed within 48 hours from collection
	Nitrate-nitrite as N completed within 48 hours
	_ Alkalinity completed within 14 days from collection
	_ pH completed within 24 hours from collection
	Sample analyzed outside recommended hold time, estimated (J/UJ)

Sample an	alvzed >	2x recommended	hold time,	unusable (R/UR

A total of nine sediment samples were submitted to GEL Laboratories, LLC (Charleston, SC) for metals analysis. The samples were collected October 11, 2007 and were received at the laboratory on October 17, 2007. The cooler temperatures ranged from 13 °C to 19 °C when they arrived at the lab, which is outside of the recommended temperature criteria of 4 ± 2 °C. Metals are not impacted by the elevated temperature, so no data were qualified. All samples were extracted and analyzed within the EPA recommended hold times.

II.	Initial Calibration
	Calibration IC correlation coefficient ≥ 0.995 _IC correlation coefficient < 0.995, results > MDL estimated (J); < MDL unusable (R)
_X	Calibration Verification ICV %R 90 - 110, results acceptable ICV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ) ICV %R < 75, results > MDL estimated (J); < MDL unusable (R) ICV %R 111-160 results > MDL estimated (J) ICV %R > 160, results > MDL unusable (R)
_X	MS Tune Analysis (check all that apply): Tune %RSD for all analytes <5%, mass calibration within 0.1 amu Tune not performed, all results unusable (R/UR) Tune not performed properly, results estimated (J/UJ) Mass calibration not within 0.1 amu, results estimated (J/UJ) %RSD>5%, results estimated (J/UJ)
All in	itial calibration data were within method-established control limits.
III.	Calibration Verification
	CCV %R 90 - 110, results acceptable CCV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ) CCV %R < 75, results > MDL estimated (J); < MDL unusable (UR) CCV %R 111-160 results > MDL estimated (J) CCV %R > 160, results > MDL unusable (R)
All co	ontinuing verification data were within method-established control limits.
IV.	Blanks
	Target analyte detected in ICB/CCB Target analyte detected in preparation blank Target analyte detected in field blank Target analyte detects $\leq 5x$ blank result qualified as not detected at sample concentration (U).

Copper was detected in one preparation blank associated with one sample (batch 695411). The blank contamination was considered negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified.

V. Interference Checks
ICS A/B Recoveries Acceptable Al, Ca, Fe, Mg sample concentrations >ICS concentrations ICS %R> 120%, results > MDL estimated (J) ICS %R 50-79%, results >MDL estimated (J), possible false negative ICS %R 50-79%, results < MDL estimated (UJ) ICS %R <50%, results > MDL and <mdl %r="" (r="" ics="" rejected="" ur)="">120, results < MDL acceptable</mdl>
No interference check sample was reported for this SDG.
VI. Laboratory Control Samples
XLCS %R 80-120 (Ag, Sb no limits)LCS %R 50-79% or >120%, results estimated (UJ/J)LCS %R > 150% and all results rejected (R)LCS %R < 50%, results < MDL rejected (R), detections estimated (J)
All recoveries and relative percent differences for LCS/LCSD pairs were within control limits.
VII. Duplicate Sample Analysis
Duplicate RPD ≤20% for waters (≤35% for soils) for results >5X PQL Duplicate range is within ±PQL (±2xPQL for soils) for results ≤ 5X PQL Qualify positive results estimated (J) if the above criteria were not met.
Three laboratory duplicate RPDs associated with the metals analysis of project sample 101207SEMSC-1-0-C(3) were greater than the control limit for arsenic, nickel, and vanadium. Nickel and vanadium were qualified as estimated (J). Arsenic was not detected in the sample at a concentration greater than five times the PQL, so the result was not qualified.
One laboratory duplicate RPD associated with the metals analysis of project sample 101207SEMSC-4-0-C(3) was greater than the control limit for cadmium. Cadmium was qualified as estimated (J).
VIII. Matrix Spikes/Matrix Spike Duplicates and Analytical/Post Digestion Spikes
Spike %R within 75-125% X Spike %R 30-74%, >125%, results > MDL estimated (J) Spike %R 30-74% results < MDL estimated (UJ) Spike %R <30%, results < MDL rejected (R) Field blank used for spike analysis

Spike %R >125%, results < MDL acceptable
Sample concentration exceeds spike concentration by a factor of $> 4x$, acceptable

The MS/MSD percent recoveries associated with the metals analysis of project sample 101207SEMSC-1-0-C(3) were greater than the control limit for arsenic, nickel, and vanadium. Additionally, the MS/MSD RPD was greater than the control limit for nickel. Arsenic, nickel, and vanadium were qualified as estimated (J) in the parent sample.

The MS and/or MSD percent recoveries associated with the metals analysis of project sample 101207SEMSC-4-0-C(3) were outside control limits for arsenic, cadmium, and copper. All three metals were qualified as estimated (J) in the parent sample.

IX. Serial Dilutions

	Sample concentration > 50x MDL and %D < 10, result acceptable
X	Sample concentration $> 50x$ MDL and %D > 10 , results $>$ MDL estimated (J)
	Sample concentration > 50x MDL and %D > 10, results < MDL estimated (UJ)

One %D associated with the serial dilution of project sample 101207SEMSC-1-0-C(3) was greater than the control limit for arsenic. Arsenic was qualified as estimated (J).

X. Field Duplicates

	_ Field duplicate RPD ≤20% waters (≤35% for soils)
	_ Field duplicate range is within <u>+</u> CRDL (<u>+</u> 2x CRDL for soils) for results <5xCRDL
Note:	There are no qualification requirements for field QC samples exceeding limits.

No field duplicates were collected for this SDG.

XI. Overall Assessment of Data

With the exceptions of the out-of-control results specified herein, all quality control data associated with the field samples were within control limits. With the exception of the qualified data summarized below, none of the out-of-control data resulted in the qualification of field data. All field results are usable as reported by the laboratory.

Summary of Qualified Data:

Field Sample Identification	Laboratory Sample Identification	Parameter	Result / Lab Flag (mg/kg)	Data Validation Result / Flag (mg/kg)	Reason Code ^a
101207SEMSC-1-0-C(3)	195904001	Arsenic	3.24	3.24 J	08, 09
101207SEMSC-1-0-C(3)	195904001	Nickel	16.1	16.1 J	07, 08
101207SEMSC-1-0-C(3)	195904001	Vanadium	32.3	32.3 J	07, 08
101207SEMSC-4-0-C(3)	195904004	Arsenic	63.9	63.9 J	08
101207SEMSC-4-0-C(3)	195904004	Cadmium	40.3	40.3 J	07, 08
101207SEMSC-4-0-C(3)	195904004	Copper	12.1	12.1 J	08

^a See definitions on last page of this report

Definitions:

QC Sample Type Cross-Reference:

ACZ Acronym	EPA Method Acronym	Definition
AS/ ASD		Analytical Spike / Analytical Spike Duplicate (Post Digestion)
ССВ	Calibration Blank	Continuing Calibration Blank
CCV	CAL	Continuing Calibration Verification Standard
DUP	LD1 and LD2	Laboratory Sample Duplicate
ICB	Calibration Blank	Initial Calibration Blank
ICV	IPC Solution	Initial Calibration Verification
ICSAB	SIC Solution	Inter-element Correction Standard
LCSS/		Laboratory Control Sample / Laboratory Control Sample
LCSSD		Duplicate (Soil)
LCSW/		Laboratory Control Sample / Laboratory Control Sample
LCSWD		Duplicate (Water)
LFB	LFB (LCS)	Laboratory Fortified Blank
LFM/	LFM/	Laboratory Fortified Matrix / Laboratory Fortified Matrix
LFMD	LFMD	Duplicate
LRB	LRB	Laboratory Reagent Blank
MS/MSD		Matrix Spike / Matrix Spike Duplicate
PBS/PBW		Prep Blank – Soil / Prep Blank -Water
PQV	CRQL	Practical Quantitation Verification Standard
SDL		Serial Dilution

Qualifiers:

Reason Code	Definition
01	Hold time or sample receipt non-conformance
02	Initial calibration non-conformance
03	Continuing calibration outside control limit
04	Blank contamination
05	Interference check sample recovery outside control limit
06	Laboratory control sample / duplicate recovery or RPD outside control limit
07	Laboratory duplicate is outside control limit
08	Matrix spike / duplicate recovery or RPD outside control limit
09	Serial dilution percent difference outside control limit

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011701

Laboratory: GEL Laboratories, LLC (Charleston, SC)

Data packages: Sample Delivery Group (SDG) Number 195904

Analytical Batches: 694903

Method: Polonium (Po) 210 (²¹⁰Po) by EML HASL 300, Po-01-RC

and per the laboratory's SOP GL-RAD-A-016 REV#9 (an

alpha spectrometry method)

Guidance Documents: U.S. Department of Energy, *Evaluation of Radiochemical*

Data Usability, es/er/ms-5, April 1997.

U.S. Department of Energy, Environmental Measurements Laboratory, *Health and Safety Laboratory (HASL)-300 Manual*, Section 4.5.4 (Po-01-RC: alpha ray spectrometry),

28th Edition, February 1997.

Modification: Data Flags and Reason Codes as specified in Appendix A

of *Evaluation of Radiochemical Data Usability* (see Attachment A below) were used to qualify the data, with modification for the evaluation of laboratory duplicate (duplicate sample error ratio used instead of normalized

absolute difference).

Clarifications: GEL did not provide calibration data. Results were not

qualified, but sample results in the project database were

populated with the applicable Reason Code (C03).

Attachment A: Validation Flags and Reason Codes

Attachment B: Validation Worksheet

Sample Cross Reference:

No.	Field Sample Identification	Date Collected	Laboratory Sample Identification
1	101207SEMSC-1-0-C(3)	10/12/2007	195904001
2	101207SEMSC-2-0-C(3)	10/12/2007	195904002
3	101207SEMSC-3-0-C(3)	10/12/2007	195904003
4	101207SEMSC-4-0-C(3)	10/12/2007	195904004
5	101207SEMSC-5-0-C(3)	10/12/2007	195904005
6	101207SEMSC-6-0-C(3)	10/12/2007	195904006
7	101207SEMSC-7-0-C(3)	10/12/2007	195904007
8	101207SEMSC-9-0-C(3)	10/12/2007	195904009
9	101207SEMSC-10-0-C(3)	10/12/2007	195904010

I. Chain-of-Custody Procedure, Sample Preservation, and Holding Time

- Signatures on chain(s) and all samples accounted for ²¹⁰Po: collected in HDPE (polyethylene) containers

A total of 9 sediment samples were collected on October 12, 2007 in HDPE containers. All samples collected during this week were shipped in 11 coolers, and arrived at the laboratory on October 17, 2007. Sample chain-of-custody and laboratory receipt documentation appears intact. The 9 samples were prepared on October 25, 2007, and analyzed on November 1, 2007, 20 days into the 138-day half-life of ²¹⁰Po.

II.	Instrument Calibration
	Confirm summary report includes: dates of calibration, geometry, count times for all analysis, number of counts for each standard, measured activity for all samples
	Confirm matrix used in geometry standard
	Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate Calibration points including efficiency, energy, and peak resolution
Initia	al calibration data were not assessed because none was provided in the data package.
III.	Calibration Verification
	Tolerance chart or statistical control chart of the appropriate 20 efficiencies and 20 relevant peak energies with 3 F+/- limits
	Resolution demonstration of relevant peak(s)
	Listing of X/Y coordinates in constructing the control charts
	Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate
	Geometries used in analysis

Calibration verification data were not assessed because none was provided in the data package.

IV. **Target Compound Identification and Quantitation**

- Confirm all samples less than MDC are qualified not detected (U)
- _X__ Less than two times the uncertainty were reported by the laboratory as not detected (U)

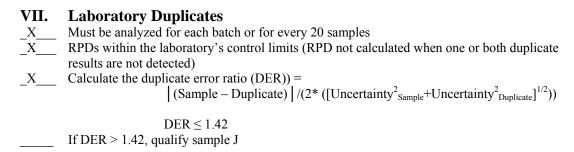
All sample results that were either less than two times the uncertainty were reported by the laboratory as not detected (U), or were greater than two times the uncertainty and greater than the minimum detectable concentration (MDC), with the following exception:

Field Sample Identification	Laboratory Sample Identification	Parameter	Result Minus 2*Uncert	Result (pCi/g)/Lab Flag	Data Validation Flag	Reason Code
101207SEMSC-10-0- C(3)	195904010	²¹⁰ Po	-0.116	0.558	UJ	Q09

The result was flagged as not detected (UJ) at the reported concentration because it failed both the above "two times uncertainty" criterion and the blank criterion specified in Section V below.

V.	Blanks
_X	Method blank results < MDC
_X	Calculate normalized absolute difference (NAD) =
	$\left (Sample - Blank) \right / \left[(TPU^2_{Sample} + TPU^2_{Blank})^{1/2} \right]$
_X	If normalized absolute difference is > 2.58 , no action necessary
_X	If normalized absolute difference is between 1.96 and 2.58, qualify sample J
	If normalized absolute difference is less than 1.96, consider rejecting data

All normalized absolute differences (per above calculation) were greater than 2.58 for all sample results that were reportable (that is, reported as a detection above the MDC), with the following exception:


	Laboratory			Result	Data	
Field Sample	Sample			(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	NAD	Flag	Flag	Code
101207SEMSC-1-0-C(3)	195904001	²¹⁰ Po	2.29	0.925	J	B01
101207SEMSC-4-0-C(3)	195904004	²¹⁰ Po	2.29	0.976	J	B01
101207SEMSC-10-0-C(3)	195904010	²¹⁰ Po	1.55	0.558	UJ	B01

VI. Chemical Tracers

_X___ Must be analyzed for each sample and laboratory QC sample

X Compare %R with laboratory control limits (25-125%)

All recoveries for Polonium (Po) 209 (²⁰⁹Po) for each field sample and laboratory control samples were within control limits.

The laboratory's laboratory duplicate criteria are: If duplicate activities are less than 5 times MDC, then the RPD should be less than 100%; if activities are greater than 5 times the MDC, the RPD should be less than 20%.

The RPD and DER associated with the laboratory duplicate pair was within these criteria.

_X	Matrix Spikes Must be analyzed for each batch or for every 20 samples Compare %R with laboratory control limits (75-125%)
Matrix	spike recovery was within the control limits.

IX. Laboratory Control Samples

_X__ Must be analyzed for each batch or for every 20 samples X Compare %R with laboratory control limits (75-125%)

Laboratory control sample recovery was within control limits.

X. Equipment and Water Blank Samples

A total of 3 equipment blanks and 3 water blanks were collected on October 11 and 12, 2007 for ²¹⁰Po analysis. All water blanks were not detected for both ²¹⁰Po, and 1 of the 3 equipment blanks was detected for ²¹⁰Po. Equipment blank sample 101108SEAR-10-EQ-0 contained 0.366 pci/L of ²¹⁰Po, which equates to 0.0732 pCi based on the 0.2L initial volume. Detections of ²¹⁰Po in this SDG ranged from 0.112 to 0.340 pCi. Since the amount of ²¹⁰Po in the equipment blank was less than that of the field samples, the field sample results were not qualified because of the equipment blank contamination.

XI. Overall Assessment of Data

With the following exceptions, all quality control data associated with the field samples were within control limits. All other field results are usable as reported by the laboratory.

Summary of Qualified Data:

	Laboratory		Result	Data	
Field Sample	Sample		(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	Flag	Result/Flag	Code
All sample results				No flag	C03
101207SEMSC-1-0-C(3)	195904001	²¹⁰ Po	0.925	J	B01
101207SEMSC-4-0-C(3)	195904004	²¹⁰ Po	0.976	J	B01
101207SEMSC-10-0-C(3)	195904010	²¹⁰ Po	0.558	UJ	B01,Q09

ATTACHMENT A

Radiochemical Data Verification and Validation: Per Appendix A in *Evaluation of Radiochemical Data Usability, es/er/ms-5* USDOE April, 1995

Flag	Definition
U	Nuclide considered not detected above the reported MDC or 2 times the uncertainty
J	Nuclide identified; the associated value is approximated
UJ	Nuclide not detected above the reported MDC or 2 times the uncertainty and a quality
	deficiency affects the data and impacts the uncertainty of the reported data
R	Result is not usable for its intended purpose

Reason	
Code	Definition
Method Bl	
B01	Concentration of contaminant in the method blank at a level ≥ the qualification level
B02	Method blank was not the same matrix as the analytical samples
B03	Gross contamination exists
B04	Blanks were not analyzed at the appropriate frequency
B05	Sample not significantly different than radiochemical method blank
B06	Blank data not reports
B07	Other (describe in comments)
Calibration	n
C01	Initial calibration sequence was not followed as appropriate
C02	Calibration was not performed at the appropriate frequency
C03	Calibration data not reported
C04	Calibration not performed
C05	Chemical resolution criteria were not satisfied
C06	Standard curve was established with fewer than the required number of standards
C07	Instrumental system determined to be out of control
C08	Other (describe in comments)
Laborator	y Duplicate
D01	Significant difference between sample and duplicate
D02	Laboratory duplicate was not analyzed at the appropriate frequency
D03	Laboratory duplicate data was not reported
D04	Other (describe in comments)
Evidentiar	y Concerns
E01	Custody of sample in question
E02	Standard not traceable
E03	Other (describe in comments)
General	
G01	Professional judgment was used to qualify the data
G02	Other (describe in comments)
Holding T	imes
H01	Holding times were exceeded
H02	Holding times were grossly exceeded
H03	Samples were not preserved properly
H04	Other (describe in comments)
Laborator	v Control Sample
L01	LCS recovery above upper control limit
L02	LCS recovery below lower control limit

Reason	5 0 11
Code	Definition
L03	LCS was not analyzed at appropriate frequency
L04	LCS not the same matrix as the analytical samples
L05	LCS data not reported
L06	Other (describe in comments)
	ke and MS/MSD
M01	MS recovery above upper control limit
M02	MS recovery below lower control limit
M03	MS not analyzed at the appropriate frequency
M04	MS data not reported
M05	Other (describe in comments)
	t Performance
P01	High background levels or a shift in the energy calibration were observed
P02	Extraneous peaks were observed
P03	Loss of resolution was observed
P04	Peak-tailing or peak splitting that may result in inaccurate quantitation were observed
P05	Instrument performance not analyzed at the appropriate frequency
P06	Other (describe in comments)
Quantitation	
Q01	Peak misidentified
Q02	Target analyte affected by interfering peak
Q03	Qualitative criteria were not satisfied
Q04	Cross contamination occurred
Q05	No raw data were provided to confirm Quantitation
Q06	MDC > RDL
Q07	Inappropriate aliquot sizes were used
Q08	Sample result < MDC
Q09	Sample result < 2s uncertainty
Q10	Negative result
Q11	Compounds were not adequately resolved
Q12	Sample weight different from calibration geometry
Q13	Sample weight greater than greatest weight on mass attenuation curve
Q14	Other (describe in comments)
Radiochen	nical Yield
Y01	Radiochemical tracer yield was above the upper control limit
Y02	Radiochemical tracer yield was below the lower control limit
Y03	Radiochemical tracer yield was zero
Y04	Radiochemical yield data was not present
Y05	Other (describe in comments)

ATTACHMENT B: DATA VALIDATION_WORKSHEET GEL SDG 195904 CERCLA 2ND 5-YEAR REVIEW_SEDIMENT 2007 MONSANTO (Page 1 of 1)

											Data Valid	dation		
Sample_No	Lab_ld	Assoc_Blnk	Sample_Type	Parameter	Lab_Result	Uncertainty	Lab_Qual	MDL	Result-MDA	Result-2*Unc	Dval_MB	Dval_DER	Qual	ReasonCode
101207SEMSC-1-0-C(3)	195904001	1201443977	SAMPLE	Polonium-210	0.925	0.387		0.326	0.599	0.151	2.29	0.09	J	B01,C03
101207SEMSC-2-0-C(3)	195904002	1201443977	SAMPLE	Polonium-210	0.317	0.350	U	0.567	-0.250	-0.383	0.82			C03
101207SEMSC-3-0-C(3)	195904003	1201443977	SAMPLE	Polonium-210	1.62	0.506		0.304	1.316	0.608	3.12			C03
101207SEMSC-4-0-C(3)	195904004	1201443977	SAMPLE	Polonium-210	0.976	0.483		0.559	0.417	0.010	1.95		J	B01,C03
101207SEMSC-5-0-C(3)	195904005	1201443977	SAMPLE	Polonium-210	1.42	0.447		0.311	1.109	0.526	3.08			C03
101207SEMSC-6-0-C(3)	195904006	1201443977	SAMPLE	Polonium-210	1.17	0.398		0.297	0.873	0.374	2.83			C03
101207SEMSC-7-0-C(3)	195904007	1201443977	SAMPLE	Polonium-210	1.35	0.484		0.376	0.974	0.382	2.71			C03
101207SEMSC-9-0-C(3)	195904009	1201443977	SAMPLE	Polonium-210	1.62	0.488		0.359	1.261	0.644	3.24			C03
101207SEMSC-10-0-C(3)	195904010	1201443977	SAMPLE	Polonium-210	0.558	0.337		0.419	0.139	-0.116	1.55		UJ	Q09,B01,C03
MB	1201443977	1201443977	MB	Polonium-210	0.0247	0.0696	U	0.157						
101207SEMSC-1-0-C(3)	1201443978	1201443977	DUP	Polonium-210	1.02	0.368		0.251						

Dupl RPD=	-1	0					Sample		
•					Equipment Rinsate detection	Conc.,pCi/	g Initial Wt, g Ar	mt, pCi	Sort
Sample_No	Coll_date	Rec_date	Ext_date	Anal_date	101107SEAR-10-EQ-0 (10/11/2007)	0.925	0.196	0.181	0.112
101207SEMSC-1-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07	Polonium-210	0.317U	0.209	ND	0.181
101207SEMSC-2-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07		1.62	0.195	0.316	0.219
101207SEMSC-3-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07	Result 0.366 pCi/L	0.976	0.224	0.219	0.293
101207SEMSC-4-0-C(3)	10/12/07	10/17/07	10/25/07	11/02/07	Initial Vol 0.2 L	1.42	0.237	0.337	0.294
101207SEMSC-5-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07	Amount 0.0732 pCi	1.17	0.251	0.294	0.316
101207SEMSC-6-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07		1.35	0.217	0.293	0.337
101207SEMSC-7-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07		1.62	0.21	0.340	0.340
101207SEMSC-9-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07		0.558	0.201	0.112	ND
101207SEMSC-10-0-C(3)	10/12/07	10/17/07	10/25/07	10/31/07					
MB	10/31/07	10/31/07	10/31/07	10/31/07	Sample Range (pCi):				
101207SEMSC-1-0-C(3)	10/12/07	10/17/07	10/31/07	10/31/07	0.112-0.340		_		
101207SEMSC-1-0-C(3)	10/12/07	10/17/07	10/31/07	10/31/07					
LCS	10/31/07	10/31/07	10/31/07	10/31/07					

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011601

Laboratory: GEL Laboratories, LLC (Charleston, SC)

Data packages: Sample Delivery Group (SDG) Numbers 195909 and

196021

Methods: Total arsenic, cadmium, copper, nickel, selenium, silver,

and vanadium by EPA Method 6020

Guidance: USEPA Contract Laboratory Program National Functional

Guidelines for Inorganic Data Review, October 2004, ICP-

AES and ICP-MS

Modification: Data validator evaluated blank contamination as defined in

the Inorganic Data Assessment Summary of the P4 Production Southeast Idaho Mine-Specific Selenium

Program "Comprehensive Site Investigation, Sampling and

Analysis Plan" (MWH, 2004)

Sample Cross Reference:

Field Sample		Laboratory Sample
Identification	Date Collected	Identification
101107SEAR-10-B-U	10/11/07	195909001
101107SEAR-10-EQ-U	10/11/07	195909002
101107SEAR-9-B-U	10/11/07	195909003
101107SEAR-9-EQ-U	10/11/07	195909004
101207SEMSC-8-B-U	10/12/07	195909005
101207SEMSC-8-EQ-U	10/12/07	195909006
101207SEMSC-8-1-C(3)	10/12/07	196021001
101207SEMSC-8-2-C(3)	10/12/07	196021002
101207SEMSC-8-3-C(3)	10/12/07	196021003
101107SEAR-9-1-C(3)	10/11/07	196021005
101107SEAR-9-2-C(3)	10/11/07	196021006
101107SEAR-9-3-C(3)	10/11/07	196021007
101107SEAR-10-1-C(3)	10/11/07	196021009
101107SEAR-10-2-C(3)	10/11/07	196021010
101107SEAR-10-3-C(3)	10/11/07	196021011

Holding	Times
	Holding

X	ICP/GFAA metals completed in <6 months from collection
	Mercury analyzed in <28 days from collection
	Chloride, fluoride, sulfate completed in <28 days from collection
	TSS and TDS completed within 7 days from collection
	O-phosphorus completed within 48 hours from collection
	Nitrate-nitrite as N completed within 48 hours
	Alkalinity completed within 14 days from collection
	pH completed within 24 hours from collection
	Sample analyzed outside recommended hold time, estimated (J/UJ)
	Sample analyzed $> 2x$ recommended hold time, unusable (R/UR)

A total of nine sediment samples were submitted to GEL Laboratories, LLC (Charleston, SC) for metals analysis. The samples were collected October 11-12, 2007 and we received at the laboratory on October 17, 2007. The cooler temperatures ranged from 13 °C to 19 °C when they arrived at the lab, which is outside of the recommended temperature criteria of 4 ± 2 °C. Metals are not impacted by the elevated temperature, so no data were qualified. All samples were extracted and analyzed within the EPA recommended hold times.

II. Initial Calibration

CCV %R > 160, results > MDL unusable (R)

Initial Calibration Verification X ICV %R 90 - 110, results acceptable ICV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ) ICV %R < 75, results > MDL estimated (J); < MDL unusable (R) ICV %R 111-160 results > MDL estimated (J) ICV %R > 160, results > MDL unusable (R)
ICP-MS Tune Analysis (check all that apply): X Tune %RSD for all analytes <5%, mass calibration within 0.1 amu Tune not performed, all results unusable (R/UR) Tune not performed properly, results estimated (J/UJ) Mass calibration not within 0.1 amu, results estimated (J/UJ) %RSD>5%, results estimated (J/UJ)
All initial calibration data were within method-established control limits.
III. Calibration Verification
X CCV %R 90 - 110, results acceptable CCV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ) CCV %R < 75, results > MDL estimated (J); < MDL unusable (UR) CCV %R 111-160 results > MDL estimated (J)

All continuing verification data were within method-established control limits.

	Target analyte detected in ICB/CCB
	Target analyte detected in preparation blank
X	Target analyte detected in field blank
X	Target analyte detects < 5x blank result qualified as not detected at sample concentration (U)

Three sets of equipment rinsate blanks and source water blanks were collected and analyzed in GEL SDG 195909. Each pair of blanks were associated with a triplicate set of samples analyzed in SDG 196021.

The source water blank, 101207SEMSC-8-B-U, associated with the three samples collected at SEMSC-8 contained arsenic. The blank contamination was considered negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified.

The source water blank, 101107SEAR-10-B-U, associated with the three samples collected at SEAR-10 contained copper. The equipment rinsate sample, 101107SEAR-10-EQ-U contained cadmium, copper, and nickel. Cadmium was detected in the associated samples at concentrations less than five times the equipment rinsate result and was qualified as not detected at the reporting limit (U) in all three samples. Additionally the reporting limit was raised to the sample concentrations. The blank contamination for copper and nickel were considered negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified.

The equipment rinsate blank, 101107SEAR-9-EQ-U contained cadmium and copper. Cadmium was detected in the associated samples at concentrations less than five times the equipment rinsate result and was qualified as not detected at the reporting limit (U) in all three samples. Additionally the reporting limit was raised to the sample concentrations. The blank contamination for copper was considered negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified.

V. Interference Checks

IV.

Blanks

_ ICS A/B Recoveries Acceptable
Al, Ca, Fe, Mg sample concentrations >ICS concentrations
_ ICS %R> 120%, results > MDL estimated (J)
_ ICS %R 50-79%, results > MDL estimated (J), possible false negative
 _ ICS %R 50-79%, results < MDL estimated (UJ)
_ ICS %R <50%, results > MDL and <mdl (r="" rejected="" th="" ur)<=""></mdl>
_ ICS %R>120, results < MDL acceptable

No interference check sample was reported for this SDG.

VI. Laboratory Control Samples
X LCS %R 80-120 (Ag, Sb no limits) LCS %R 50-79% or >120%, results estimated (UJ/J) LCS %R > 150% and all results rejected (R) LCS %R < 50%, results < MDL rejected (R), detections estimated (J)
All recoveries and relative percent differences for LCS/LCSD pairs were within control limits.
VII. Duplicate Sample Analysis
Duplicate RPD ≤20% for waters (≤35% for soils) for results >5X PQL Duplicate range is within ±PQL (±2xPQL for soils) for results ≤ 5X PQL X Qualify positive results estimated (J) if the above criteria were not met.
Three laboratory duplicate RPDs associated with the metals analysis of project sample 101207SEMSC-8-1-C(3) were greater than the control limit for arsenic, cadmium, copper, nickel, and vanadium. All five metals were qualified as estimated (J) in 101207SEMSC-8-1-C(3), 101207SEMSC-8-2-C(3), and 101207SEMSC-8-3-C(3).
VIII. Matrix Spikes/Matrix Spike Duplicates and Analytical/Post Digestion Spikes
Spike %R within 75-125% X Spike %R 30-74%, >125%, results > MDL estimated (J) Spike %R 30-74% results < MDL estimated (UJ) Spike %R <30%, results < MDL rejected (R) Field blank used for spike analysis Spike %R >125%, results < MDL acceptable Sample concentration exceeds spike concentration by a factor of > 4x, acceptable
The MS/MSD percent recoveries associated with the metals analysis of project sample 101207SEMSC-8-1-C(3) were outside control limits for cadmium and nickel. Additionally, the MS/MSD RPD was greater than the control limit for cadmium. Nickel and cadmium were qualified as estimated (J) in 101207SEMSC-8-1-C(3), 101207SEMSC-8-2-C(3), and 101207SEMSC-8-3-C(3).
IX. Serial Dilutions
 X Sample concentration > 50x MDL and %D < 10, result acceptable Sample concentration > 50x MDL and %D > 10, results > MDL estimated (J) Sample concentration > 50x MDL and %D > 10, results < MDL estimated (UJ)
All serial dilution %Ds were with the control limits.
X. Field Duplicates
Field duplicate RPD ≤20% waters (≤35% for soils) Field duplicate range is within ±CRDL (±2x CRDL for soils) for results <5xCRDL Note: There are no qualification requirements for field QC samples exceeding limits.
rote. There are no quantication requirements for field QC samples exceeding filling.

The field duplicate RPD is intended to be used to evaluate sampling precision when two replicate sample volumes are collected. Since this sample was collected in triplicate, the field duplicate parameters are not applicable.

Samples 101207SEMSC-8, 101107SEAR-9, 101107SEAR-10 were collected in triplicate; an average of the three results is reported in the final data tables.

XI. Overall Assessment of Data

With the exceptions of the out-of-control results specified herein, all quality control data associated with the field samples were within control limits. With the exception of the qualified data summarized below, none of the out-of-control data resulted in the qualification of field data. All field results are usable as reported by the laboratory.

Field Sample Identification	Laboratory Sample Identification	Parameter	Result / Lab Flag (mg/kg)	Data Validation Result / Flag (mg/kg)	Reason Code ^a
101207SEMSC-8-1-C(3)	196021001	Arsenic	106	106 J	07
101207SEMSC-8-1-C(3)	196021001	Cadmium	13.0	13.0 J	07, 08
101207SEMSC-8-1-C(3)	196021001	Copper	7.50	7.50 J	07
101207SEMSC-8-1-C(3)	196021001	Nickel	98.6	98.6 J	07, 08
101207SEMSC-8-1-C(3)	196021001	Vanadium	13.0	13.0 J	07
101207SEMSC-8-2-C(3)	196021001	Arsenic	99.6	99.6 J	07
101207SEMSC-8-2-C(3)	196021001	Cadmium	17.1	17.1 J	07, 08
101207SEMSC-8-2-C(3)	196021001	Copper	9.59	9.59 J	07
101207SEMSC-8-2-C(3)	196021001	Nickel	33.3	33.3 J	07, 08
101207SEMSC-8-2-C(3)	196021001	Vanadium	105	105 J	07
101207SEMSC-8-3-C(3)	196021001	Arsenic	85.6	85.6 J	07
101207SEMSC-8-3-C(3)	196021001	Cadmium	13.7	13.7 J	07, 08
101207SEMSC-8-3-C(3)	196021001	Copper	8.84	8.84 J	07
101207SEMSC-8-3-C(3)	196021001	Nickel	24.5	24.5 J	07, 08
101207SEMSC-8-3-C(3)	196021001	Vanadium	92.2	92.2 J	07
101107SEAR-9-1-C(3)	196021005	Cadmium	2.29	2.29 U	04
101107SEAR-9-2-C(3)	196021006	Cadmium	2.59	2.59 U	04
101107SEAR-9-3-C(3)	196021007	Cadmium	2.36	2.36 U	04
101107SEAR-10-1-C(3)	196021009	Cadmium	0.791	0.791 U	04
101107SEAR-10-2-C(3)	196021010	Cadmium	0.839	0.839 U	04
101107SEAR-10-3-C(3)	196021011	Cadmium	0.672	0.672 U	04

^a See definitions on last page of this report

Definitions:

QC Sample Type Cross-Reference:

ACZ Acronym	EPA Method Acronym	Definition
AS/ ASD		Analytical Spike / Analytical Spike Duplicate (Post Digestion)
CCB	Calibration Blank	Continuing Calibration Blank
CCV	CAL	Continuing Calibration Verification Standard
DUP	LD1 and LD2	Laboratory Sample Duplicate
ICB	Calibration Blank	Initial Calibration Blank
ICV	IPC Solution	Initial Calibration Verification
ICSAB	SIC Solution	Inter-element Correction Standard
LCSS/		Laboratory Control Sample / Laboratory Control Sample
LCSSD		Duplicate (Soil)
LCSW/		Laboratory Control Sample / Laboratory Control Sample
LCSWD		Duplicate (Water)
LFB	LFB (LCS)	Laboratory Fortified Blank
LFM/	LFM/	Laboratory Fortified Matrix / Laboratory Fortified Matrix
LFMD	LFMD	Duplicate
LRB	LRB	Laboratory Reagent Blank
MS/MSD		Matrix Spike / Matrix Spike Duplicate
PBS/PBW		Prep Blank – Soil / Prep Blank -Water
PQV	CRQL	Practical Quantitation Verification Standard
SDL		Serial Dilution

Qualifiers:

Reason Code	Definition
01	Hold time or sample receipt non-conformance
02	Initial calibration non-conformance
03	Continuing calibration outside control limit
04	Blank contamination
05	Interference check sample recovery outside control limit
06	Laboratory control sample / duplicate recovery or RPD outside control limit
07	Laboratory duplicate is outside control limit
08	Matrix spike / duplicate recovery or RPD outside control limit
09	Serial dilution percent difference outside control limit

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011701

Laboratory: GEL Laboratories, LLC (Charleston, SC)

Data packages: Sample Delivery Group (SDG) Number 195909

Analytical Batches: 694904

Method: Polonium (Po) 210 (²¹⁰Po) by EML HASL 300, Po-01-RC

and per the laboratory's SOP GL-RAD-A-016 REV#9 (an

alpha spectrometry method)

Guidance Documents: U.S. Department of Energy, *Evaluation of Radiochemical*

Data Usability, es/er/ms-5, April 1997.

U.S. Department of Energy, Environmental Measurements Laboratory, *Health and Safety Laboratory (HASL)-300 Manual*, Section 4.5.4 (Po-01-RC: alpha ray spectrometry),

28th Edition, February 1997.

Modification: Data Flags and Reason Codes as specified in Appendix A

of *Evaluation of Radiochemical Data Usability* (see Attachment A below) were used to qualify the data, with modification for the evaluation of laboratory duplicate (duplicate sample error ratio used instead of normalized

absolute difference).

Clarifications: GEL did not provide calibration data. Results were not

qualified, but sample results in the project database were

populated with the applicable Reason Code (C03).

Attachment A: Validation Flags and Reason Codes

Attachment B: Validation Worksheet

Sample Cross Reference:

No.	Field Sample Identification	Date Collected	Laboratory Sample Identification
1	101107SEAR-10-B-U	10/11/07	195909001
2	101107SEAR-10-EQ-U	10/11/07	195909002
3	101107SEAR-9-B-U	10/11/07	195909003
4	101107SEAR-9-EQ-U	10/11/07	195909004
5	101207SEMSC-8-B-U	10/12/07	195909005
6	101207SEMSC-8-EQ-U	10/12/07	195909006

I.	Chain-of-Custody Procedure, Sample Preservation, and Holding Time
Y	Signatures on chain(s) and all samples accounted for

_X__ Signatures on chain(s) and all samples accounted for _X_ Po: collected in HDPE (polyethylene) containers

A total of 3 equipment blanks and 3 water blanks were collected on October 11 and 12, 2007 for ²¹⁰Po analysis. These field blanks were collected along with all the soil and sediment samples collected during this week, shipped in 11 coolers, and arrived at the laboratory on October 17, 2007. Sample chain-of-custody and laboratory receipt documentation appears intact. The 6 blanks were prepared and analyzed on October 29, 2007, 17 and 18 days into the 138-day half-life of ²¹⁰Po.

II.	Instrument Calibration
	Confirm summary report includes: dates of calibration, geometry, count times for all analysis, number of counts for each standard, measured activity for all samples
	Confirm matrix used in geometry standard
	Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate
	Calibration points including efficiency, energy, and peak resolution
Initial III.	calibration data were not assessed because none was provided in the data package. Calibration Verification
	Calibration Verification Tolerance chart or statistical control chart of the appropriate 20 efficiencies and 20 relevant peak
	Calibration Verification
III. —	Calibration Verification Tolerance chart or statistical control chart of the appropriate 20 efficiencies and 20 relevant peak energies with 3 F+/- limits
	Calibration Verification Tolerance chart or statistical control chart of the appropriate 20 efficiencies and 20 relevant peak energies with 3 F+/- limits Resolution demonstration of relevant peak(s)

Calibration verification data were not assessed because none was provided in the data package.

IV.	Target	Compound	Identification	and	Quantitation
-----	--------	----------	----------------	-----	--------------

X___ Confirm all samples less than MDC are qualified not detected (U)

_X___ Less than two times the uncertainty were reported by the laboratory as not detected (U)

All sample results that were either less than two times the uncertainty were reported by the laboratory as not detected (U), or were greater than two times the uncertainty and greater than the minimum detectable concentration (MDC), with the following exception:

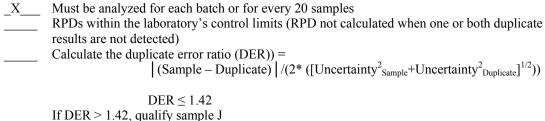
Field Sample Identification	Laboratory Sample Identification	Parameter	Result Minus 2*Uncert	Result (pCi/g)/Lab Flag	Data Validation Flag	Reason Code
101107SEAR-10-EQ-U	195909002	²¹⁰ Po	-0.116	0.558	UJ	Q09

The result was flagged as not detected (UJ) at the reported concentration because it failed both the above "two times uncertainty" criterion and the blank criterion specified in Section V below.

Blanks
Method blank results < MDC
Calculate normalized absolute difference (NAD) =
$ (Sample - Blank) / ([Uncertainty^2_{Sample} + Uncertainty^2_{Blank}]^{1/2})$
If normalized absolute difference is > 2.58, no action necessary
If normalized absolute difference is between 1.96 and 2.58, qualify sample J
If normalized absolute difference is less than 1.96, consider rejecting data

All normalized absolute differences (per above calculation) were greater than 2.58 for all sample results that were reportable (that is, reported as a detection above the MDC), with the following exception:

	Laboratory			Result	Data	
Field Sample	Sample			(pCi/L)/Lab	Validation	Reason
Identification	Identification	Parameter	NAD	Flag	Flag	Code
101107SEAR-10-EO-U	195909002	²¹⁰ Po	1.38	0.366	III	B01


VI. Radiochemical Tracers

_X___ Must be analyzed for each sample and laboratory QC sample

_X___ Compare %R with laboratory control limits (25-125%)

All recoveries for Polonium (Po) 209 (²⁰⁹Po) for each field sample and laboratory control samples were within control limits.

VII. Laboratory Duplicates

The laboratory's laboratory duplicate criteria are: If duplicate activities are less than 5 times MDC, then the RPD should be less than 100%; if activities are greater than 5 times the MDC, the RPD should be less than 20%.

Laboratory duplicate results were not detected, so neither an RPDs nor a DER was calculated.

XIII. -X X	Must be analyzed for each batch or for every 20 samples Compare %R with laboratory control limits (75-125%)
	spike recovery was within the control limits.
IX. _X _X	Laboratory Control Samples Must be analyzed for each batch or for every 20 samples Compare %R with laboratory control limits (75-125%)

Laboratory control sample recovery was within control limits.

X. Equipment and Water Blank Samples

A total of 3 equipment blanks and 3 water blanks were collected on October 11 and 12, 2007 for ²¹⁰Po analysis. All water blanks were not detected for both ²¹⁰Po, and 1 of the 3 equipment blanks was detected for ²¹⁰Po. Equipment blank sample 101108SEAR-10-EQ-0 contained 0.366 pci/L of ²¹⁰Po, which equates to 0.0732 pCi based on the 0.2L initial volume. Detections of ²¹⁰Po in field samples ranged from 0.112 to 0.518 pCi (see data validation reports for GEL SDGs 195901 and 195904). Since amount of ²¹⁰Po in the equipment blank was less than that of the field samples and the NAD was less that 1.96 (see Section V") indicating that the detection is relatively uncertain, the field sample results were not qualified because of the equipment blank contamination.

XI. Overall Assessment of Data

With the following exceptions, all quality control data associated with the field samples were within control limits. All other field results are usable as reported by the laboratory.

Field Sample Identification	Laboratory Sample Identification	Parameter	Result (pCi/L)/Lab Flag	Data Validation Result/Flag	Reason Code
All sample results				No flag	C03
101107SEAR-10-EQ-U	195909002	²¹⁰ Po	0.366	UJ	Q09,B01

ATTACHMENT A

Radiochemical Data Verification and Validation: Per Appendix A in *Evaluation of Radiochemical Data Usability, es/er/ms-5* USDOE April, 1995

Flag	Definition
U	Nuclide considered not detected above the reported MDC or 2 times the uncertainty
J	Nuclide identified; the associated value is approximated
UJ	Nuclide not detected above the reported MDC or 2 times the uncertainty and a quality
	deficiency affects the data and impacts the uncertainty of the reported data
R	Result is not usable for its intended purpose

Reason	
Code	Definition
Method Bl	ank
B01	Concentration of contaminant in the method blank at a level ≥ the qualification level
B02	Method blank was not the same matrix as the analytical samples
B03	Gross contamination exists
B04	Blanks were not analyzed at the appropriate frequency
B05	Sample not significantly different than radiochemical method blank
B06	Blank data not reports
B07	Other (describe in comments)
Calibration	
C01	Initial calibration sequence was not followed as appropriate
C02	Calibration was not performed at the appropriate frequency
C03	Calibration data not reported
C04	Calibration not performed
C05	Chemical resolution criteria were not satisfied
C06	Standard curve was established with fewer than the required number of standards
C07	Instrumental system determined to be out of control
C08	Other (describe in comments)
Laboratory	
D01	Significant difference between sample and duplicate
D02	Laboratory duplicate was not analyzed at the appropriate frequency
D03	Laboratory duplicate data was not reported
D04	Other (describe in comments)
	y Concerns
E01	Custody of sample in question
E02	Standard not traceable
E03	Other (describe in comments)
General	
G01	Professional judgment was used to qualify the data
G02	Other (describe in comments)
Holding Ti	
H01	Holding times were exceeded
H02	Holding times were grossly exceeded
H03	Samples were not preserved properly
H04	Other (describe in comments)
	Control Sample
L01	LCS recovery above upper control limit
L02	LCS recovery below lower control limit
L03	LCS was not analyzed at appropriate frequency
L04	LCS not the same matrix as the analytical samples

Reason	
Code	Definition
L05	LCS data not reported
L06	Other (describe in comments)
Matrix Spi	ke and MS/MSD
M01	MS recovery above upper control limit
M02	MS recovery below lower control limit
M03	MS not analyzed at the appropriate frequency
M04	MS data not reported
M05	Other (describe in comments)
	t Performance
P01	High background levels or a shift in the energy calibration were observed
P02	Extraneous peaks were observed
P03	Loss of resolution was observed
P04	Peak-tailing or peak splitting that may result in inaccurate quantitation were observed
P05	Instrument performance not analyzed at the appropriate frequency
P06	Other (describe in comments)
Quantitati	
Q01	Peak misidentified
Q02	Target analyte affected by interfering peak
Q03	Qualitative criteria were not satisfied
Q04	Cross contamination occurred
Q05	No raw data were provided to confirm Quantitation
Q06	MDC > RDL
Q07	Inappropriate aliquot sizes were used
Q08	Sample result < MDC
Q09	Sample result < 2s uncertainty
Q10	Negative result
Q11	Compounds were not adequately resolved
Q12	Sample weight different from calibration geometry
Q13	Sample weight greater than greatest weight on mass attenuation curve
Q14	Other (describe in comments)
Radiochen	
Y01	Radiochemical tracer yield was above the upper control limit
Y02	Radiochemical tracer yield was below the lower control limit
Y03	Radiochemical tracer yield was zero
Y04	Radiochemical yield data was not present
Y05	Other (describe in comments)

ATTACHMENT B: DATA VALIDATION_WORKSHEET GEL SDG 195909 CERCLA 2ND 5-YEAR REVIEW_SEDIMENT 2007 MONSANTO (Page 1 of 1)

											Data Validation		
Sample_No	Lab_ld	Assoc_Blnk	Sample_Type	Parameter	Lab_Result	Uncertainty	Lab_Qual	MDL	Result-MDC	Result-2*Unc	Dval_MB Dval_DEI	R Qual	ReasonCode
101107SEAR-10-B-U	195909001	1201443981	SAMPLE	Polonium-210	0.158	0.164	U	0.258	-0.100	-0.170	0.79 ND		C03
101107SEAR-10-EQ-U	195909002	1201443981	SAMPLE	Polonium-210	0.366	0.241		0.316	0.050	-0.116	1.38	UJ	Q09,B01,C03
101107SEAR-9-B-U	195909003	1201443981	SAMPLE	Polonium-210	0.0384	0.0852	U	0.170	-0.132	-0.132	0.22		C03
101107SEAR-9-EQ-U	195909004	1201443981	SAMPLE	Polonium-210	0.0997	0.137	U	0.236	-0.136	-0.174	0.54		C03
101207SEMSC-8-B-U	195909005	1201443981	SAMPLE	Polonium-210	0.0992	0.160	U	0.291	-0.192	-0.221	0.48		C03
101207SEMSC-8-EQ-U	195909006	1201443981	SAMPLE	Polonium-210	-0.0158	0.143	U	0.336	-0.352	-0.302	0.16		C03
MB	1201443981	1201443981	MB	Polonium-210	0.0106	0.0903	U	0.210					
101107SEAR-10-B-U	1201443982	1201443981	DUP	Polonium-210	0.188	0.250	U	0.408					
101107SEAR-10-B-U	1201443983	1201443981	MS	Polonium-210	91	3.03		0.427					
LCS	1201443984	1201443981	LCS	Polonium-210	101	3.01		0.337					

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011701

Laboratory: GEL Laboratories, LLC (Charleston, SC)

Data packages: Sample Delivery Group (SDG) Number 195921

Analytical Batches: 694893

Method: Polonium (Po) 210 (²¹⁰Po) by EML HASL 300, Po-01-RC

and per the laboratory's SOP GL-RAD-A-016 REV#9 (an

alpha spectrometry method)

Guidance Documents: U.S. Department of Energy, *Evaluation of Radiochemical*

Data Usability, es/er/ms-5, April 1997.

U.S. Department of Energy, Environmental Measurements Laboratory, *Health and Safety Laboratory (HASL)-300 Manual*, Section 4.5.4 (Po-01-RC: alpha ray spectrometry),

28th Edition, February 1997.

Modification: Data Flags and Reason Codes as specified in Appendix A

of *Evaluation of Radiochemical Data Usability* (see Attachment A below) were used to qualify the data, with modification for the evaluation of laboratory duplicate (duplicate sample error ratio used instead of normalized

absolute difference).

Clarifications: GEL did not provide calibration data. Results were not

qualified, but sample results in the project database were

populated with the applicable Reason Code (C03).

Attachment A: Validation Flags and Reason Codes

Attachment B: Validation Worksheet

Sample Cross Reference:

No.	Field Sample Identification	Date Collected	Laboratory Sample Identification
1	101207SEMSC-8-1-C(3)	10/12/07	196021001
2	101207SEMSC-8-2-C(3)	10/12/07	196021002
3	101207SEMSC-8-3-C(3)	10/12/07	196021003
4	101107SEAR-9-1-C(3)	10/11/07	196021005
5	101107SEAR-9-2-C(3)	10/11/07	196021006
6	101107SEAR-9-3-C(3)	10/11/07	196021007
7	101107SEAR-10-1-C(3)	10/11/07	196021009
8	101107SEAR-10-2-C(3)	10/11/07	196021010
9	101107SEAR-10-3-C(3)	10/11/07	196021011

I. Chain-of-Custody Procedure, Sample Preservation, and Holding Time

- Signatures on chain(s) and all samples accounted for ²¹⁰Po: collected in HDPE (polyethylene) containers

A total of 9 sediment samples (3 sets of triplicate samples) were collected on October 11 and 12, 2007 in HDPE containers. All samples collected during this week were shipped in 11 coolers, and arrived at the laboratory on October 17, 2007. Sample chain-of-custody and laboratory receipt documentation appears intact. The 9 samples were prepared on October 19, 2007, and analyzed on October 30, 2007, 18 and 19 days into the 138-day half-life of ²¹⁰Po.

II.	Instrument Calibration
	Confirm summary report includes: dates of calibration, geometry, count times for all analysis, number of counts for each standard, measured activity for all samples
	Confirm matrix used in geometry standard
	Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate
	Calibration points including efficiency, energy, and peak resolution
Initia	l calibration data were not assessed because none was provided in the data package.
III.	Calibration Verification
	Tolerance chart or statistical control chart of the appropriate 20 efficiencies and 20 relevant peak energies with 3 F+/- limits
	Resolution demonstration of relevant peak(s)
	Listing of X/Y coordinates in constructing the control charts
	Evidence of decay correction of standard prior to calculation of efficiencies, as appropriate
	Geometries used in analysis

Calibration verification data were not assessed because none was provided in the data package.

Target Compound Identification and Quantitation IV.

Confirm all samples less than MDC are qualified not detected (U)

_X___ Less than two times the uncertainty were reported by the laboratory as not detected (U)

All sample results that were either less than two times the uncertainty were reported by the laboratory as not detected (U), or were greater than two times the uncertainty and greater than the minimum detectable concentration (MDC), with the following exception:

	Laboratory		Result	Result	Data	
Field Sample	Sample		Minus	(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	2*Uncert	Flag	Flag	Code
101207SEMSC-8-1-C(3)	196021001	²¹⁰ Po	-0.031	0.915	UJ	Q09
101207SEMSC-8-2-C(3)	196021002	²¹⁰ Po	-0.215	0.743	UJ	Q09
101107SEAR-9-1-C(3)	196021005	²¹⁰ Po	-0.247	0.715	UJ	Q09
101107SEAR-10-1-C(3)	196021009	²¹⁰ Po	-0.088	0.862	UJ	Q09
101107SEAR-10-2-C(3)	196021010	²¹⁰ Po	-0.187	0.663	UJ	Q09

Some results were flagged as not detected (UJ) at the reported concentrations because they failed both the above "two times uncertainty" criterion and the blank criterion specified in Section V below.

V. Blanks

X	Mathad	h10m1r	results <	MDC
Λ	Memod	DIAHK	resums >	

_X___ Calculate normalized absolute difference (NAD) =

 $|(Sample - Blank)|/([TPU^2_{Sample} + TPU^2_{Blank}]^{1/2})$

X If normalized absolute difference is > 2.58, no action necessary

X___ If normalized absolute difference is between 1.96 and 2.58, qualify sample J

X If normalized absolute difference is less than 1.96, consider rejecting data

All normalized absolute differences (per above calculation) were greater than 2.58 for all sample results that were reportable (that is, reported as a detection above the MDC), with the following exception:

Field Sample	Laboratory Sample			Result (pCi/g)/Lab	Data Validation	Reason
Identification	Identification	Parameter	NAD	Flag	Flag	Code
101207SEMSC-8-1-C(3)	196021001	²¹⁰ Po	1.86	0.915	UJ	B01
101207SEMSC-8-2-C(3)	196021002	²¹⁰ Po	1.49	0.743	UJ	B01
101107SEAR-9-1-C(3)	196021005	²¹⁰ Po	1.43	0.715	UJ	B01
101107SEAR-9-2-C(3)	196021006	²¹⁰ Po	1.96	0.916	J	B01
101107SEAR-9-3-C(3)	196021007	²¹⁰ Po	2.69	1.82	J	B01
101107SEAR-10-1-C(3)	196021009	²¹⁰ Po	1.75	0.862	UJ	B01
101107SEAR-10-2-C(3)	196021010	²¹⁰ Po	1.49	0.663	UJ	B01
101107SEAR-10-3-C(3)	196021011	²¹⁰ Po	2.48	1.26	J	B01

VI. Chemical Tracers

_X___ Must be analyzed for each sample and laboratory QC sample

X Compare %R with laboratory control limits (25-125%)

All recoveries for Polonium (Po) 209 (²⁰⁹Po) for each field sample and laboratory control samples were within control limits.

VII.	Laboratory Duplicates
_X	Must be analyzed for each batch or for every 20 samples
_X	RPDs within the laboratory's control limits (RPD not calculated when one or both duplicate results are not detected)
X	Calculate the duplicate error ratio (DER)) = $ \left \text{(Sample - Duplicate)} \right / (2* ([Uncertainty^2{Sample} + Uncertainty^2_{Duplicate}]^{1/2})) $
	DER ≤ 1.42
	If DER > 1.42, qualify sample J

The laboratory's laboratory duplicate criteria are: If duplicate activities are less than 5 times MDC, then the RPD should be less than 100%; if activities are greater than 5 times the MDC, the RPD should be less than 20%.

The RPD and DER associated with the laboratory duplicate pair was within these criteria.

VIII. Matrix Spikes

_X__ Must be analyzed for each batch or for every 20 samples _X__ Compare %R with laboratory control limits (75-125%)

Matrix spike recovery was within the control limits.

IX. Laboratory Control Samples

_X__ Must be analyzed for each batch or for every 20 samples X Compare %R with laboratory control limits (75-125%)

Laboratory control sample recovery was within control limits.

X. Equipment and Water Blank Samples

A total of 3 equipment blanks and 3 water blanks were collected on October 11 and 12, 2007 for ²¹⁰Po analysis. All water blanks were not detected for both ²¹⁰Po, and 1 of the 3 equipment blanks was detected for ²¹⁰Po. Equipment blank sample 101108SEAR-10-EQ-0 contained 0.366 pci/L of ²¹⁰Po, which equates to 0.0732 pCi based on the 0.2L initial volume. Detections of ²¹⁰Po in this SDG ranged from 0.134 to 0.362 pCi. Since amount of ²¹⁰Po in the equipment blank was less than that of the field samples, the field sample results were not qualified because of the equipment blank contamination.

XI. Overall Assessment of Data

With the following exceptions, all quality control data associated with the field samples were within control limits. All other field results are usable as reported by the laboratory.

	Laboratory		Result	Data	
Field Sample	Sample		(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	Flag	Result/Flag	Code
All sample results				No flag	C03

Et II G	Laboratory		Result	Data	D
Field Sample	Sample		(pCi/g)/Lab	Validation	Reason
Identification	Identification	Parameter	Flag	Result/Flag	Code
101207SEMSC-8-1-C(3)	196021001	²¹⁰ Po	0.915	UJ	Q09,B01
101207SEMSC-8-2-C(3)	196021002	²¹⁰ Po	0.743	UJ	Q09,B01
101107SEAR-9-1-C(3)	196021005	²¹⁰ Po	0.715	UJ	Q09,B01
101107SEAR-9-2-C(3)	196021006	²¹⁰ Po	0.916	J	B01
101107SEAR-9-3-C(3)	196021007	²¹⁰ Po	1.82	J	B01
101107SEAR-10-1-C(3)	196021009	²¹⁰ Po	0.862	UJ	Q09,B01
101107SEAR-10-2-C(3)	196021010	²¹⁰ Po	0.663	UJ	Q09,B01
101107SEAR-10-3-C(3)	196021011	²¹⁰ Po	1.26	J	B01

ATTACHMENT A

Radiochemical Data Verification and Validation: Per Appendix A in *Evaluation of Radiochemical Data Usability, es/er/ms-5* USDOE April, 1995

Flag	Definition	
U	Nuclide considered not detected above the reported MDC or 2 times the uncertainty	
J	Nuclide identified; the associated value is approximated	
UJ	Nuclide not detected above the reported MDC or 2 times the uncertainty and a quality	
	deficiency affects the data and impacts the uncertainty of the reported data	
R	Result is not usable for its intended purpose	

Reason	
Code	Definition
Method Bl	ank
B01	Concentration of contaminant in the method blank at a level ≥ the qualification level
B02	Method blank was not the same matrix as the analytical samples
B03	Gross contamination exists
B04	Blanks were not analyzed at the appropriate frequency
B05	Sample not significantly different than radiochemical method blank
B06	Blank data not reports
B07	Other (describe in comments)
Calibration	1
C01	Initial calibration sequence was not followed as appropriate
C02	Calibration was not performed at the appropriate frequency
C03	Calibration data not reported
C04	Calibration not performed
C05	Chemical resolution criteria were not satisfied
C06	Standard curve was established with fewer than the required number of standards
C07	Instrumental system determined to be out of control
C08	Other (describe in comments)
	Duplicate
D01	Significant difference between sample and duplicate
D02	Laboratory duplicate was not analyzed at the appropriate frequency
D03	Laboratory duplicate data was not reported
D04	Other (describe in comments)
	y Concerns
E01	Custody of sample in question
E02	Standard not traceable
E03	Other (describe in comments)
General	
G01	Professional judgment was used to qualify the data
G02	Other (describe in comments)
Holding T	
H01	Holding times were exceeded
H02	Holding times were grossly exceeded
H03	Samples were not preserved properly
H04	Other (describe in comments)
	Control Sample
L01	LCS recovery above upper control limit
L02	LCS recovery below lower control limit
L03	LCS was not analyzed at appropriate frequency
L04	LCS not the same matrix as the analytical samples

Reason	
Code	Definition
L05	LCS data not reported
L06	Other (describe in comments)
Matrix Spi	ke and MS/MSD
M01	MS recovery above upper control limit
M02	MS recovery below lower control limit
M03	MS not analyzed at the appropriate frequency
M04	MS data not reported
M05	Other (describe in comments)
	t Performance
P01	High background levels or a shift in the energy calibration were observed
P02	Extraneous peaks were observed
P03	Loss of resolution was observed
P04	Peak-tailing or peak splitting that may result in inaccurate quantitation were observed
P05	Instrument performance not analyzed at the appropriate frequency
P06	Other (describe in comments)
Quantitatio	
Q01	Peak misidentified
Q02	Target analyte affected by interfering peak
Q03	Qualitative criteria were not satisfied
Q04	Cross contamination occurred
Q05	No raw data were provided to confirm Quantitation
Q06	MDC > RDL
Q07	Inappropriate aliquot sizes were used
Q08	Sample result < MDC
Q09	Sample result < 2s uncertainty
Q10	Negative result
Q11	Compounds were not adequately resolved
Q12	Sample weight different from calibration geometry
Q13	Sample weight greater than greatest weight on mass attenuation curve
Q14	Other (describe in comments)
Radiochen	
Y01	Radiochemical tracer yield was above the upper control limit
Y02	Radiochemical tracer yield was below the lower control limit
Y03	Radiochemical tracer yield was zero
Y04	Radiochemical yield data was not present
Y05	Other (describe in comments)

ATTACHMENT B: DATA VALIDATION_WORKSHEET GEL SDG 196021 CERCLA 2ND 5-YEAR REVIEW_SEDIMENT 2007 MONSANTO

												Data Val	dation		
Sample_No	Lab_ld	Batch_No	Assoc_Blnk	Sample_Type	Parameter	Lab_Result	Uncertainty	Lab_Qual	MDL	Result-MDA	Result-2*Unc	Dval_MB	Dval_DER	Qual	ReasonCode
101207SEMSC-8-1-C(3)	196021001	694893	1201443950	SAMPLE	Polonium-210	0.915	0.473		0.564	0.351	-0.031	1.86	0.02	UJ	Q09,B01,C03
101207SEMSC-8-2-C(3)	196021002	694893	1201443950	SAMPLE	Polonium-210	0.743	0.479		0.644	0.099	-0.215	1.49		UJ	Q09,B01,C03
101207SEMSC-8-3-C(3)	196021003	694893	1201443950	SAMPLE	Polonium-210	0.616	0.438	U	0.630	-0.014	-0.260	1.35			C03
101107SEAR-9-1-C(3)	196021005	694893	1201443950	SAMPLE	Polonium-210	0.715	0.481		0.652	0.063	-0.247	1.43		UJ	Q09,B01,C03
101107SEAR-9-2-C(3)	196021006	694893	1201443950	SAMPLE	Polonium-210	0.916	0.448		0.427	0.489	0.020	1.96		J	Q09,C03
101107SEAR-9-3-C(3)	196021007	694893	1201443950	SAMPLE	Polonium-210	1.82	0.663		0.499	1.321	0.494	2.69		J	Q09,C03
101107SEAR-10-1-C(3)	196021009	694893	1201443950	SAMPLE	Polonium-210	0.862	0.475		0.502	0.360	-0.088	1.75		UJ	Q09,B01,C03
101107SEAR-10-2-C(3)	196021010	694893	1201443950	SAMPLE	Polonium-210	0.663	0.425		0.504	0.159	-0.187	1.49		UJ	Q09,B01,C03
101107SEAR-10-3-C(3)	196021011	694893	1201443950	SAMPLE	Polonium-210	1.26	0.489		0.356	0.904	0.282	2.48		J	Q09,C03
MB	1201443950	694893	1201443950	MB	Polonium-210	-0.00457	0.144	U	0.360						
101207SEMSC-8-1-C(3)	1201443951	694893	1201443950	DUP	Polonium-210	0.936	0.462		0.480						
101207SEMSC-8-1-C(3)	1201443952	694893	1201443950	MS	Polonium-210	102	3.07		0.375						
LCS	1201443953	694893	1201443950	LCS	Polonium-210	90	2.27		0.219						

Dupl RPD= -2.3

			Sample		
Equipment f	Rinsate detection	Conc.,pCi/g	Initial Wt, g A	mt, pCi	Sort
101107SEA	R-10-EQ-0 (10/11/2007)	0.915	0.203	0.186	0.134
Polonium-21	10	0.743	0.201	0.149	0.136
		0.616	0.217	0.134	0.143
Result	0.366 pCi/L	0.715	0.2	0.143	0.149
Initial Vol	0.2 L	0.916	0.199	0.182	0.178
Amount	0.0732 pCi	1.82	0.199	0.362	0.182
		0.862	0.206	0.178	0.186
		0.663	0.205	0.136	0.252
		1.26	0.2	0.252	0.362
Sample Rar 0.134-0.362	· . ,				

MWH Client: Monsanto Company

MWH Project Name: CERCLA 2nd 5-Year Review

MWH Project Number: 1010076.011601

Laboratory: ACZ Laboratories, Inc. (Steamboat Springs, CO)

Data packages: Sample Delivery Group (SDG) Number L65816

Methods: Total arsenic, cadmium, copper, nickel, selenium, silver,

and vanadium by EPA Method 6020

Guidance: USEPA Contract Laboratory Program National Functional

Guidelines for Inorganic Data Review, October 2004, ICP-

AES and ICP-MS

Modification: Data validator evaluated blank contamination as defined in

the Inorganic Data Assessment Summary of the P4 Production Southeast Idaho Mine-Specific Selenium

Program "Comprehensive Site Investigation, Sampling and

Analysis Plan" (MWH, 2004)

Sample Cross Reference:

Field Sample Identification	Date Collected	Laboratory Sample Identification
101107SEAR-9-4-C(3)	10/11/07	L65816-01
101107SEAR-10-4-C(3)	10/11/07	L65816-02
101207SEMSC-8-4-C(3)	10/12/07	L65816-03

I. Holding Times

X	ICP/GFAA metals completed in <6 months from collection
	Mercury analyzed in <28 days from collection
	Chloride, fluoride, sulfate completed in <28 days from collection
	TSS and TDS completed within 7 days from collection
	O-phosphorus completed within 48 hours from collection
	Nitrate-nitrite as N completed within 48 hours
	Alkalinity completed within 14 days from collection
	pH completed within 24 hours from collection
	Sample analyzed outside recommended hold time, estimated (J/UJ)
	Sample analyzed $> 2x$ recommended hold time, unusable (R/UR)

A total of three sediment samples were submitted to ACZ Laboratories, Inc. (ACZ) for metals analysis. The samples were collected October 11, 2007 and we received at the laboratory on October 23, 2007. The cooler temperature was 13.1 °C when it arrived at the lab, which is outside of the recommended temperature criteria of 4 ± 2 °C. Metals are not impacted by the elevated temperature, so no data were qualified. All samples were extracted and analyzed within the EPA recommended hold times.

Initial Calibration II.

Initial	l Calibration
X	IC correlation coefficient ≥ 0.995
	IC correlation coefficient < 0.995, results > MDL estimated (J); < MDL unusable (R)
	Calibration Verification
_X	ICV %R 90 - 110, results acceptable ICV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ)
	ICV %R < 75, results > MDL estimated (J); < MDL unusable (R)
	ICV %R 111-160 results > MDL estimated (J)
	ICV $%R > 160$, results $> MDL$ unusable (R)
	MS Tune Analysis (check all that apply):
	Tune %RSD for all analytes <5%, mass calibration within 0.1 amu
	Tune not performed, all results unusable (R/UR) Tune not performed properly, results estimated (J/UJ)
	Mass calibration not within 0.1 amu, results estimated (J/UJ)
	%RSD>5%, results estimated (J/UJ)
All in	itial calibration data were within method-established control limits.
III.	Calibration Verification
X	CCV %R 90 - 110, results acceptable
	CCV %R 75-89, results > MDL estimated (J); < MDL estimated (UJ)
	CCV %R < 75, results > MDL estimated (J); < MDL unusable (UR) CCV %R 111-160 results > MDL estimated (J)
	CCV %R > 160, results > MDL unusable (R)
All co	ontinuing verification data were within method-established control limits.
IV.	Blanks
X	Target analyte detected in ICB/CCB
X	Target analyte detected in preparation blank
	Target analyte detected in field blank Target analyte detects $\leq 5x$ blank result qualified as not detected at sample concentration (U).
	Target analyte detects 2 3x brank result quantied as not detected at sample concentration (O).
	nic was detected in the preparation blank and two continuing calibration blanks
20000	inted with botch WC225762. Additionally argonic was detected in the properties

associated with batch WG235762. Additionally, arsenic was detected in the preparation blank associated with batch WG235919. The blank contamination was considered

negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified.

Vanadium was detected in the preparation blank, the initial calibration verification blank, and two continuing calibration blanks associated with batch WG235814. The blank contamination was considered negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified.

Selenium was detected in the preparation blank associated with batch WG235762. The blank contamination was considered negligible (defined as less than 20 percent of the lowest sample value), so the data were not qualified

V. Interference Checks
ICS A/B Recoveries Acceptable Al, Ca, Fe, Mg sample concentrations >ICS concentrations ICS %R> 120%, results > MDL estimated (J) ICS %R 50-79%, results >MDL estimated (J), possible false negative ICS %R 50-79%, results < MDL estimated (UJ) ICS %R <50%, results > MDL and <mdl %r="" (r="" ics="" rejected="" ur)="">120, results < MDL acceptable</mdl>
All interference check sample recoveries were within control limits.
VI. Laboratory Control Samples
X LCS %R 80-120 (Ag, Sb no limits) LCS %R 50-79% or >120%, results estimated (UJ/J) LCS %R > 150% and all results rejected (R) LCS %R < 50%, results < MDL rejected (R), detections estimated (J)
All recoveries and relative percent differences for LCS/LCSD pairs were within control limits.
VII. Duplicate Sample Analysis
X Duplicate RPD ≤20% for waters (≤35% for soils) for results >5X PQL Duplicate range is within ±PQL (±2xPQL for soils) for results ≤ 5X PQL Qualify positive results estimated (J) if the above criteria were not met.
All laboratory replicate RPDs were within control limits.
VIII. Matrix Spikes/Matrix Spike Duplicates and Analytical/Post Digestion Spikes

X Spike %R within 75-125%

__ Field blank used for spike analysis

Spike %R 30-74%, >125%, results > MDL estimated (J) Spike %R 30-74% results < MDL estimated (UJ) Spike %R <30%, results < MDL rejected (R)

Spike %R >125%, results < MDL acceptable
Sample concentration exceeds spike concentration by a factor of $> 4x$, acceptable

All recoveries and relative percent differences for LFM/LFMD pairs were within control limits with one exception. The matrix spike recoveries associated with the metals analysis of all three project samples were outside the control limits. The matrix spike was not performed on a project sample, so no data were qualified.

IX. Serial Dilutions

```
Sample concentration > 50x MDL and %D < 10, result acceptable

X Sample concentration > 50x MDL and %D > 10, results > MDL estimated (J)

Sample concentration > 50x MDL and %D > 10, results < MDL estimated (UJ)
```

The serial dilution percent difference associated with the analysis of arsenic in project sample 101107SEAR-9-4-C-(3) was greater than the control limit. Arsenic was qualified as estimated (J) in the sample.

X. Field Duplicates

Field duplicate RPD \(\leq 20\%\) waters (\(\leq 35\%\) for soils)
Field duplicate range is within \pm CRDL (\pm 2x CRDL for soils) for results \leq 5xCRDL

Note: There are no qualification requirements for field QC samples exceeding limits.

No field duplicates were collected for this SDG.

XI. Overall Assessment of Data

With the exceptions of the out-of-control results specified herein, all quality control data associated with the field samples were within control limits. With the exception of the qualified data summarized below, none of the out-of-control data resulted in the qualification of field data. All field results are usable as reported by the laboratory.

Field Sample Identification	Laboratory Sample Identification	Parameter	Result / Lab Flag (mg/kg)	Data Validation Result / Flag (mg/kg)	Reason Code ^a
101107SEAR-9-4-C(3)	L65816-01	Arsenic	5.1	5.1 J	09

^a See definitions on last page of this report

Definitions:

QC Sample Type Cross-Reference:

ACZ Acronym	EPA Method Acronym	Definition
AS/ ASD		Analytical Spike / Analytical Spike Duplicate (Post Digestion)
CCB	Calibration Blank	Continuing Calibration Blank
CCV DUP	CAL LD1 and LD2	Continuing Calibration Verification Standard
ICB	LD1 and LD2 Calibration Blank	Laboratory Sample Duplicate Initial Calibration Blank
ICV	IPC Solution	Initial Calibration Verification
ICSAB	SIC Solution	Inter-element Correction Standard
LCSS/		Laboratory Control Sample / Laboratory Control Sample
LCSSD		Duplicate (Soil)
LCSW/ LCSWD		Laboratory Control Sample / Laboratory Control Sample Duplicate (Water)
LFB	LFB (LCS)	Laboratory Fortified Blank
LFM/	LFM/	Laboratory Fortified Matrix / Laboratory Fortified Matrix
LFMD	LFMD	Duplicate
LRB	LRB	Laboratory Reagent Blank
MS/MSD		Matrix Spike / Matrix Spike Duplicate
PBS/PBW		Prep Blank – Soil / Prep Blank -Water
PQV	CRQL	Practical Quantitation Verification Standard
SDL		Serial Dilution

Qualifiers:

Reason Code	Definition
01	Hold time or sample receipt non-conformance
02	Initial calibration non-conformance
03	Continuing calibration outside control limit
04	Blank contamination
05	Interference check sample recovery outside control limit
06	Laboratory control sample / duplicate recovery or RPD outside control limit
07	Laboratory duplicate is outside control limit
08	Matrix spike / duplicate recovery or RPD outside control limit
09	Serial dilution percent difference outside control limit